Endocrine-Disrupting Chemicals pp 175-189

Part of the Contemporary Endocrinology book series (COE) | Cite as

Endocrine Disruptors, Epigenetically Induced Changes, and Transgenerational Transmission of Characters and Epigenetic States

  • Carlos Guerrero-Bosagna
  • Luis Valladares

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jablonka E, Matzke M, Thieffry D, Van Speybroeck L. The genome in context: biologists and philosophers on epigenetics. Bioessays 2002; 24(4):392–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Surani MA. Reprogramming of genome function through epigenetic inheritance. Nature 2001; 414(6859):122–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Laird PW, Jaenisch R. The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 1996; 30: 441–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Singal R, Ginder GD. DNA methylation. Blood 1999; 93(12):4059–70.PubMedGoogle Scholar
  5. 5.
    Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code. Curr Opin Genet Dev 2005; 15(2):163–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Wallace JA, Orr-Weaver TL. Replication of heterochromatin: insights into mechanisms of epigenetic inheritance. Chromosoma 2005; 114(6):389–402.PubMedCrossRefGoogle Scholar
  7. 7.
    Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410(6824):120–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410(6824):116–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Craig JM. Heterochromatin–many flavours themes. Bioessays 2005; 27(1):17–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 2005; 15(5):490–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen ZX, Riggs AD. Maintenance and regulation of DNA methylation patterns in mammals. Biochem Cell Biol 2005; 83(4):438–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes R, Soloway PD. Regulation of imprinted DNA methylation. Cytogenet Genome Res 2006; 113(1–4):122–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Amzallag GN. Connectance in Sorghum development: beyond the genotype-phenotype duality. Biosystems 2000; 56(1):1–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33(Suppl):245–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Guerrero-Bosagna C, Sabat P, Valladares L. Environmental signaling and evolutionary change: can exposure of pregnant mammals to environmental estrogens lead to epigenetically induced evolutionary changes in embryos. Evol Dev 2005; 7(4):341–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Li S, Hursting SD, Davis BJ, McLachlan JA, Barrett JC. Environmental exposure, DNA methylation, and gene regulation: lessons from diethylstilbestrol-induced cancers. Ann N Y Acad Sci 2003; 983:161–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci USA 1990; 87(12):4692–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Danzo BJ. The effects of environmental hormones on reproduction. Cell Mol Life Sci 1998; 54(11):1249–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis SE. Life cycle of the mammalian germ cell: implication for spontaneous mutation frequencies. Teratology 1999; 59(4):205–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 2001; 65(4):1215–23.PubMedGoogle Scholar
  21. 21.
    Rogers MB, Glozak MA, Heller LC. Induction of altered gene expression in early embryos. Mutat Res 1997; 396(1–2):79–95.PubMedGoogle Scholar
  22. 22.
    Maturana-Romesìn H, Mpodozis J. The origin of species by means of natural drift. Rev Chil Hist Nat 2000; 73: 261–300.CrossRefGoogle Scholar
  23. 23.
    McLachlan JA. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 2001; 22(3):319–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith AG, Gangolli SD. Organochlorine chemicals in seafood: occurrence and health concerns. Food Chem Toxicol 2002; 40(6):767–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Colborn T, Clemen C. Chemically Induced Alterations in Sexual and Functional Development: the Wildlife/Human Connection. Princeton, NJ: Princeton Scientific Publishing; 1992.Google Scholar
  26. 26.
    Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG, Anton-Culver H. Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ Health Perspect 1993; 101(5):372–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheek AO, McLachlan JA. Environmental hormones and the male reproductive system. J Androl 1998; 19(1):5–10.PubMedGoogle Scholar
  28. 28.
    Commission on Life sciences. Hormonally Active Agents in the Environment. Washington, D.C.: National Academy Press; 1999.Google Scholar
  29. 29.
    Cheek AO, Vonier PM, Oberdorster E, Burow BC, McLachlan JA. Environmental signaling: a biological context for endocrine disruption. Environ Health Perspect 1998; 106(Suppl 1):5–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Clode SA. Assessment of in vivo assays for endocrine disruption. Best Pract Res Clin Endocrinol Metab 2006; 20(1):35–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Charlier TD, Balthazart J. Modulation of hormonal signaling in the brain by steroid receptor coactivators. Rev Neurosci 2005; 16(4):339–57.PubMedGoogle Scholar
  32. 32.
    Chung AC, Cooney AJ. The varied roles of nuclear receptors during vertebrate embryonic development. Nucl Recept Signal 2003; 1: e007.PubMedCrossRefGoogle Scholar
  33. 33.
    Blumberg B, Evans RM. Orphan nuclear receptors–new ligands and new possibilities. Genes Dev 1998; 12(20):3149–55.PubMedGoogle Scholar
  34. 34.
    Robinson-Rechavi M, Carpentier AS, Duffraisse M, Laudet V. How many nuclear hormone receptors are there in the human genome. Trends Genet 2001; 17(10):554–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Lamba J, Lamba V, Schuetz E. Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr Drug Metab 2005; 6(4):369–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature 1988; 331(6151):91–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Hong H, Yang L, Stallcup MR. Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3. J Biol Chem 1999; 274(32):22618–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Giguere V. To ERR in the estrogen pathway. Trends Endocrinol Metab 2002; 13(5):220–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Kraus RJ, Ariazi EA, Farrell ML, Mertz JE. Estrogen-related receptor alpha 1 actively antagonizes estrogen receptor-regulated transcription in MCF-7 mammary cells. J Biol Chem 2002; 277(27):24826–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Greschik H, Wurtz JM, Sanglier S, et al. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol Cell 2002; 9(2):303–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Horard B, Vanacker JM. Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand. J Mol Endocrinol 2003; 31(3):349–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Lu D, Kiriyama Y, Lee KY, Giguere V. Transcriptional regulation of the estrogen-inducible pS2 breast cancer marker gene by the ERR family of orphan nuclear receptors. Cancer Res 2001; 61(18):6755–1.PubMedGoogle Scholar
  43. 43.
    Sun P, Wei L, Denkert C, Lichtenegger W, Sehouli J. The orphan nuclear receptors, estrogen receptor-related receptors: their role as new biomarkers in gynecological cancer. Anticancer Res 2006; 26(2C):1699–706.PubMedGoogle Scholar
  44. 44.
    Rickenbacher U, McKinney JD, Oatley SJ, Blake CC. Structurally specific binding of halogenated biphenyls to thyroxine transport protein. J Med Chem 1986; 29(5):641–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Arulmozhiraja S, Shiraishi F, Okumura T, et al. Structural requirements for the interaction of 91 hydroxylated polychlorinated biphenyls with estrogen and thyroid hormone receptors. Toxicol Sci 2005; 84(1):49–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Cheek AO, Kow K, Chen J, McLachlan JA. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect 1999; 107(4):273–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Sultan C, Balaguer P, Terouanne B, et al. Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation. Mol Cell Endocrinol 2001; 178(1–2):99–105.PubMedCrossRefGoogle Scholar
  48. 48.
    Sunami O, Kunimatsu T, Yamada T, et al. Evaluation of a 5-day Hershberger assay using young mature male rats: methyltestosterone and p,p ^′ -DDE, but not fenitrothion, exhibited androgenic or antiandrogenic activity in vivo. J Toxicol Sci 2000; 25(5):403–15.PubMedGoogle Scholar
  49. 49.
    Lambright C, Ostby J, Bobseine K, et al. Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicol Sci 2000; 56(2):389–99.PubMedCrossRefGoogle Scholar
  50. 50.
    McIntyre BS, Barlow NJ, Wallace DG, Maness SC, Gaido KW, Foster PM. Effects of in utero exposure to linuron on androgen-dependent reproductive development in the male Crl:CD(SD)BR rat. Toxicol Appl Pharmacol 2000; 167(2):87–99.PubMedCrossRefGoogle Scholar
  51. 51.
    Wynne-Edwards KE. Hormonal changes in mammalian fathers. Horm Behav 2001; 40(2):139–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Baker ME. Flavonoids as hormones. A perspective from an analysis of molecular fossils. Adv Exp Med Biol 1998; 439: 249–67.PubMedGoogle Scholar
  53. 53.
    Benassayag C, Perrot-Applanat M, Ferre F. Phytoestrogens as modulators of steroid action in target cells. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 777(1–2):233–48.PubMedGoogle Scholar
  54. 54.
    Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997; 138(3):863–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Blair RM, Fang H, Branham WS, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 2000; 54(1):138–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Ise R, Han D, Takahashi Y, et al. Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett 2005; 579(7):1732–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S. Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 1998; 54(1):105–2.PubMedGoogle Scholar
  58. 58.
    Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998; 139(10):4252–63.PubMedCrossRefGoogle Scholar
  59. 59.
    McDonnell DP. The Molecular Pharmacology of SERMs. Trends Endocrinol Metab 1999; 10(8):301–11.CrossRefPubMedGoogle Scholar
  60. 60.
    McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol 1995; 9(6):659–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Metivier R, Penot G, Flouriot G, Pakdel F. Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol 2001; 15(11):1953–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Yoon K, Pellaroni L, Ramamoorthy K, Gaido K, Safe S. Ligand structure-dependent differences in activation of estrogen receptor alpha in human HepG2 liver and U2 osteogenic cancer cell lines. Mol Cell Endocrinol 2000; 162(1–2):211–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Lonard DM, Smith CL. Molecular perspectives on selective estrogen receptor modulators (SERMs): progress in understanding their tissue-specific agonist and antagonist actions. Steroids 2002; 67(1):15–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action. Physiol Rev 2001; 81(4):1535–65.PubMedGoogle Scholar
  65. 65.
    Wachsman JT. DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 1997; 375(1):1–8.PubMedGoogle Scholar
  66. 66.
    Barrett JC, Wong A, McLachlan JA. Diethylstilbestrol induces neoplastic transformation without measurable gene mutation at two loci. Science 1981; 212(4501):1402–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Li S, Washburn KA, Moore R, et al. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res 1997; 57(19):4356–9.PubMedGoogle Scholar
  68. 68.
    Lyn-Cook BD, Blann E, Payne PW, Bo J, Sheehan D, Medlock K. Methylation profile and amplification of proto-oncogenes in rat pancreas induced with phytoestrogens. Proc Soc Exp Biol Med 1995; 208(1):116–9.PubMedGoogle Scholar
  69. 69.
    Day JK, Bauer AM, DesBordes C, et al. Genistein alters methylation patterns in mice. J Nutr 2002; 132(8 Suppl):2419S–3S.PubMedGoogle Scholar
  70. 70.
    Wu Q, Zhou ZJ, Ohsako S. [Effect of environmental contaminants on DNA methyltransferase activity of mouse preimplantation embryos]. Wei Sheng Yan Jiu 2006; 35(1):30–2.PubMedGoogle Scholar
  71. 71.
    Hong T, Nakagawa T, Pan W, et al. Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 2004; 317(1):259–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Singleton DW, Feng Y, Yang J, Puga A, Lee AV, Khan SA. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-alpha-positive human cells. Environ Res 2006; 100(1):86–92.PubMedCrossRefGoogle Scholar
  73. 73.
    Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 2003; 13(2): 127–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Vignali M, Workman JL. Location and function of linker histones. Nat Struct Biol 1998; 5(12): 1025–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Cauwenberge A, Alexandre H. Effect of genistein alone and in combination with okadaic acid on the cell cycle resumption of mouse oocytes. Int J Dev Biol 2000; 44(4):409–20.PubMedGoogle Scholar
  76. 76.
    Auger J, Lesaffre C, Bazire A, Schoevaert-Brossault D, Eustache F. High-resolution image cytometry of rat sperm nuclear shape, size and chromatin status. Experimental validation with the reproductive toxicant vinclozolin. Reprod Toxicol 2004; 18(6):775–83.PubMedCrossRefGoogle Scholar
  77. 77.
    Nishizawa H, Morita M, Sugimoto M, Imanishi S, Manabe N. Effects of in utero exposure to bisphenol A on mRNA expression of arylhydrocarbon and retinoid receptors in murine embryos. J Reprod Dev 2005; 51(3):315–24.PubMedCrossRefGoogle Scholar
  78. 78.
    Nielsen M, Hoyer PE, Lemmen JG, van der Burg B, Byskov AG. Octylphenol does not mimic diethylstilbestrol-induced oestrogen receptor-alpha expression in the newborn mouse uterine epithelium after prenatal exposure. J Endocrinol 2000; 167(1):29–37.PubMedCrossRefGoogle Scholar
  79. 79.
    Newbold R. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect 1995; 103(Suppl 7):83–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Naciff JM, Daston GP. Toxicogenomic approach to endocrine disrupters: identification of a transcript profile characteristic of chemicals with estrogenic activity. Toxicol Pathol 2004; 32(Suppl 2):59–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Takai Y, Tsutsumi O, Ikezuki Y, et al. Preimplantation exposure to bisphenol A advances postnatal development. Reprod Toxicol 2001; 15(1):71–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Adeeko A, Li D, Forsyth DS, et al. Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci 2003; 74(2):407–15.PubMedCrossRefGoogle Scholar
  83. 83.
    Nikaido Y, Yoshizawa K, Danbara N, et al. Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 2004; 18(6):803–11.PubMedCrossRefGoogle Scholar
  84. 84.
    Markey CM, Coombs MA, Sonnenschein C, Soto AM. Mammalian development in a changing environment: exposure to endocrine disruptors reveals the developmental plasticity of steroid-hormone target organs. Evol Dev 2003; 5(1):67–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature 1999; 401(6755):763–4.PubMedCrossRefGoogle Scholar
  86. 86.
    McEvoy TG, Robinson JJ, Ashworth CJ, Rooke JA, Sinclair KD. Feed and forage toxicants affecting embryo survival and fetal development. Theriogenology 2001; 55(1):113–29.PubMedCrossRefGoogle Scholar
  87. 87.
    Wu Q, Ohsako S, Ishimura R, Suzuki JS, Tohyama C. Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod 2004; 70(6):1790–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Foster W, Chan S, Platt L, Hughes C. Detection of endocrine disrupting chemicals in samples of second trimester human amniotic fluid. J Clin Endocrinol Metab 2000; 85(8):2954–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Newbold RR, Hanson RB, Jefferson WN, Bullock BC, Haseman J, McLachlan JA. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 2000; 21(7):1355–63.PubMedCrossRefGoogle Scholar
  90. 90.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308(5727):1466–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Skinner MK, Anway MD. Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors. Ann N Y Acad Sci 2005; 1061: 18–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 2006; 147(6 Suppl):S43–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Extavour CG, Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 2003; 130(24):5869–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Cupp AS, Uzumcu M, Suzuki H, Dirks K, Phillips B, Skinner MK. Effect of transient embryonic in vivo exposure to the endocrine disruptor methoxychlor on embryonic and postnatal testis development. J Androl 2003; 24(5):736–45.PubMedGoogle Scholar
  95. 95.
    Uzumcu M, Suzuki H, Skinner MK. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reprod Toxicol 2004; 18(6):765–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Jung T, Fulka J Jr, Lee C, Moor RM. Effects of the protein phosphorylation inhibitor genistein on maturation of pig oocytes in vitro. J Reprod Fertil 1993; 98(2):529–35.PubMedCrossRefGoogle Scholar
  97. 97.
    Russell LB, Hunsicker PR, Cacheiro NL, Bangham JW, Russell WL, Shelby MD. Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc Natl Acad Sci USA 1989; 86(10):3704–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Russell LB, Hunsicker PR, Shelby MD. Melphalan, a second chemical for which specific-locus mutation induction in the mouse is maximum in early spermatids. Mutat Res 1992; 282(3):151–8.PubMedCrossRefGoogle Scholar
  99. 99.
    MacPhee DG. Epigenetics and epimutagens: some new perspectives on cancer, germ line effects and endocrine disrupters. Mutat Res 1998; 400(1–2):369–79.PubMedGoogle Scholar
  100. 100.
    Holliday R. The possibility of epigenetic transmission of defects induced by teratogens. Mutat Res 1998; 422(2):203–5.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Carlos Guerrero-Bosagna
  • Luis Valladares

There are no affiliations available

Personalised recommendations