Skip to main content

Growth Factors and their Receptors in the Genesis and Treatment of Thyroid Cancer

  • Chapter
Molecular Basis of Thyroid Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 122))

Conclusions

Thyroid tumors are common neoplasms that exhibit a wide range of biologic behavior. Numerous factors have been shown to govern thyrocyte proliferation. In particular, hormones and growth factors likely play a role as promoters of tumor cell growth in genetically transformed cells. In some instances enhanced growth factors and their receptors may serve as survival signals for neoplastic cells. In other instances, however, abnormal forms of growth factor receptors (such as members of the EGF-R/HER2/neu) may also be important in the early stages of cell transformation and chromosomal instability consistent with the clonal composition of thyroid neoplasms. More detailed structure/function studies of growth factor/receptor functional interactions in morphologically characterized thyroid nodules are required. It is anticipated that these studies will identify signaling patterns that will provide the basis for the development of more specific and effective pharmacotherapeutic agents.

This work was supported in part by grants from the Canadian Institutes of Health Research (MT-14404).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rizzino A. Growth Factors. In: Kovacs K, Asa SL, editors. Functional Endocrine Pathology. Boston: Blackwell Scientific Publications Inc., 1991: 979–989.

    Google Scholar 

  2. Ezzat S. The role of hormones, growth factors and their receptors in pituitary tumorigenesis. Brain Pathol 2001; 11(3):356–370.

    CAS  PubMed  Google Scholar 

  3. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002; 2(11):836–849.

    Article  CAS  PubMed  Google Scholar 

  4. van der Laan BFAM, Freeman JL, Asa SL. Expression of growth factors and growth factor receptors in normal and tumorous human thyroid tissues. Thyroid 1995; 5:67–73.

    PubMed  Google Scholar 

  5. Minuto F, Barreca A, del Monte P, Cariola G, Torre GC, Giordano G. Immunoreactive insulin-like growth factor I (IGF-I) and IGF-I-binding protein content in human thyroid tissue. J Clin Endocrinol Metab 1989; 68:621–626.

    CAS  PubMed  Google Scholar 

  6. Okimura Y, Kitajima N, Uchiyama T et al. Insulin-like growth factor I (IGF-I) production and the presence of IGF-I receptors in rat medullary thyroid carcinoma cell line 6-23 (clone 6). Biochem Biophys Res Commun 1989; 161:589–595.

    Article  CAS  PubMed  Google Scholar 

  7. Di Carlo A, Pisano G, Parmeggiani U, Beguinot L, Macchia V. Epidermal growth factor receptor and thyrotropin response in human thyroid tissues. J Endocrinol Invest 1990; 13:293–299.

    PubMed  Google Scholar 

  8. Duh Q-Y, Gum ET, Gerend PL, Raper SE, Clark OH. Epidermal growth factor receptors in normal and neoplastic thyroid tissue. Surgery 1993; 98:1000–1007.

    Google Scholar 

  9. Grubeck-Loebenstein B, Buchan G, Sadeghi R et al. Transforming growth factor beta regulates thyroid growth. role in the pathogenesis of nontoxic goiter. J Clin Invest 1989; 83:764–770.

    CAS  PubMed  Google Scholar 

  10. Aasland R, Akslen LA, Varhaug JE, Lillehaug JR. Co-expression of the genes encoding transforming growth factor-α and its receptor in papillary carcinomas of the thyroid. Int J Cancer 1990; 46:382–387.

    CAS  PubMed  Google Scholar 

  11. Driman DK, Kobrin MS, Kudlow JE, Asa SL. Transforming growth factor-α in normal and neoplastic human endocrine tissues. Hum Pathol 1992; 23:1360–1365.

    Article  CAS  PubMed  Google Scholar 

  12. Heldin N-E, Gustavsson B, Claesson-Welsh L et al. Aberrant expression of receptors for platelet-derived growth factor in an anaplastic thyroid carcinoma cell line. Proc Natl Acad Sci USA 1993; 85:9302–9306.

    Google Scholar 

  13. Matsuo K, Tang S-H, Sharifi B, Rubin SA, Schreck R, Fagin JA. Growth factor production by human thyroid carcinoma cells: Abundant expression of a platelet-derived growth factor-β-like protein by a human papillary carcinoma cell line. J Clin Endocrinol Metab 1993; 77:996–1004.

    CAS  PubMed  Google Scholar 

  14. Logan A, Gonzalez AM, Buscaglia ML, Black EG, Sheppard MC. Basic fibroblast growth factor is an autocrine factor for rat thyroid follicular cells. Ann NY Acad Sci 1991; 638:453–455.

    CAS  PubMed  Google Scholar 

  15. Beerli RR, Hynes NE. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 1996; 271:6071–6076.

    CAS  PubMed  Google Scholar 

  16. Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL. Membrane-anchored expression of transforming growth factor-α in human pituitary adenoma cells. J Clin Endocrinol Metab 1995; 80:534–539.

    CAS  PubMed  Google Scholar 

  17. Fisher DA, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 1990; 11:418–442.

    CAS  PubMed  Google Scholar 

  18. Bates SE, Davidson NE, Valverius EM et al. Expression of transforming growth factor α and its messenger ribonucleic acid in human breast cancer: Its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988; 2:543–555.

    CAS  PubMed  Google Scholar 

  19. Liu SC, Sanfilippo B, Perroteau I, Derynck R, Salomon DS, Kidwell WR. Expression of transforming growth factor α (TGFα) in differentiated rat mammary tumors: estrogen induction of TGFα production. Mol Endocrinol 1987; 1:683–692.

    CAS  PubMed  Google Scholar 

  20. Nelson KG, Takahashi T, Lee DC et al. Transforming growth factor-α is a potential medicator of estrogen action in the mouse uterus. Endocrinology 1992; 131:1657–1664.

    CAS  PubMed  Google Scholar 

  21. Son HY, Nishikawa A, Kanki K et al. Synergistic interaction between excess caffeine and deficient iodine on the promotion of thyroid carcinogenesis in rats pretreated with N-bis (2-hydroxypropyl) nitrosamine. Cancer Sci 2003; 94(4):334–337.

    Article  CAS  PubMed  Google Scholar 

  22. Mäkinen T, Pekonen F, Franssila K, Lamberg B-A. Receptors for epidermal growth factor and thyrotropin in thyroid carcinoma. Acta Endocrinol (Copen) 1988; 117:45–50.

    Google Scholar 

  23. Marti U, Ruchti C, Kampf J et al. Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid 2001; 11(2): 137–145.

    Article  CAS  PubMed  Google Scholar 

  24. Carlomagno F, Vitagliano D, Guida T et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002; 62(24):7284–7290.

    CAS  PubMed  Google Scholar 

  25. Qian X, LeVea CM, Freeman JK, Dougall WC, Greene MI. Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: A mechanism of interreceptor kinase activation and transphosphorylation. Proc Natl Acad Sci USA 1994; 91;1500–1504.

    CAS  PubMed  Google Scholar 

  26. Dougall WC, Quan X, Peterson NC, Miller MJ, Samanta A, Greene MI. The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 1994; 9:2109–2123.

    CAS  PubMed  Google Scholar 

  27. Goldman R, Levy RB, Peles E, Yarden Y. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells; A mechanism for receptor transregulation. Biochem J 1990; 29:11024–11028.

    CAS  Google Scholar 

  28. Sugg SL, Ezzat S, Zheng L, Freeman JL, Rosen IB, Asa SL. Oncogene profile of papillary thyroid carcinoma. Surgery 1999; 125:46–52.

    CAS  PubMed  Google Scholar 

  29. Grande M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M. Transforming growth factorbeta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 2002; 115(Pt 22):4227–4236.

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee SK, Sarkar DK, Weston AP, De A, Campbell DR. Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis 1997; 18(6): 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  31. Banerjee SK, Zoubine MN, Tran TM, Weston AP, Campbell DR. Overexpression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol 2000; 16(2):253–260.

    CAS  PubMed  Google Scholar 

  32. Mason IJ. The ins and outs of fibroblast growth factors. Cell 1994; 78:547–552.

    Article  CAS  PubMed  Google Scholar 

  33. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 1987; 8:95–114.

    CAS  PubMed  Google Scholar 

  34. Boelaert K, McCabe CJ, Tannahill LA et al. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 2003; 88(5):2341–2347.

    Article  CAS  PubMed  Google Scholar 

  35. Komorowski J, Pasieka Z, Jankiewicz-Wika J, Stepien H. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer. Thyroid 2002; 12(8):655–662.

    Article  CAS  PubMed  Google Scholar 

  36. Givol D, Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J 1992; 6(15):3362–3369.

    CAS  PubMed  Google Scholar 

  37. Yan G, Wang F, Fukabori Y, Sussman D, Hou J, McKeehan WL. Expression and transformation of a variant of the heparin-binding fibroblast growth factor receptor (flg) gene resulting from splicing of the exon at alternate 3’-acceptor site. Biochem Biophys Res Commun 1992; 183:423–430.

    Article  CAS  PubMed  Google Scholar 

  38. Peters KG, Werner S, Chen G, Williams LT. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Develop 1992; 114:233–243.

    CAS  Google Scholar 

  39. Hanneken A, Ying W, Ling N, Baird A. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc Natl Acad Sci USA 1994; 91:9170–9174.

    CAS  PubMed  Google Scholar 

  40. Werner S, Weinberg W, Liao X et al. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J 1993; 12:2635–2643.

    CAS  PubMed  Google Scholar 

  41. Gonzalez AM, Logan A, Ying W, Lappi DA, Berry M, Baird A. Fibroblast growth factor in the hypothalamic-pituitary axis: Differential expression of fibroblast growth factor-2 and a high affinity receptor. Endocrinology 1994; 134:2289–2297.

    Article  CAS  PubMed  Google Scholar 

  42. Eisemman A, Ahn AJ, Graziani G, Tronick SR, Ron D. Alternative splicing generates at least five different isoforms of the human bFGF receptor. Oncogene 1991; 6:1195–1202.

    Google Scholar 

  43. Becker D, Lee PLP, Rodeck U, Herlyn M. Inhibition of the fibroblast growth factor receptor 1 (FGFR-1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene 1992; 7:2303–2313.

    CAS  PubMed  Google Scholar 

  44. Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 1993; 13:4513–4522.

    CAS  PubMed  Google Scholar 

  45. Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 2001; 231(1):47–62.

    Article  CAS  PubMed  Google Scholar 

  46. Onose H, Emioto N, Sugihara H, Shimizu K, Wakabayashi I. Overexpression of fibroblast growth factor receptor 3 in a human thyroid carcinoma cell line results in overgrowth of the confluent cultures. Eur J Endocrinol 1999; 140(2): 169–173.

    Article  CAS  PubMed  Google Scholar 

  47. Ranzi V, Meakin SO, Miranda C, Mondellini P, Pierotti MA, Greco A. The signaling adapters fibroblast growth factor receptor substrate 2 and 3 are activated by the thyroid TRK oncoproteins. Endocrinology 2003; 144(3):922–928.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Ezzat, S. (2005). Growth Factors and their Receptors in the Genesis and Treatment of Thyroid Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics