Skip to main content

Gene Therapy for Thyroid Cancer

  • Chapter
  • 773 Accesses

Part of the Cancer Treatment and Research book series (CTAR,volume 122)

Conclusions

I here summarized the recent articles regarding gene therapy for thyroid cancer. Although there have been tremendous progresses in this field in the last decade, there is unfortunately no published report on clinical trial of gene therapy for thyroid cancer [except one patient treated with ONYX-015 (66)]. Patients with thyroid cancer, particularly those with anaplastic and medullary cancers, will hopefully benefit from gene therapy approach in the near future.

Keywords

  • Thyroid Cancer
  • Thyroid Carcinoma
  • Medullary Thyroid Carcinoma
  • Medullary Thyroid Cancer
  • Thyroid Cancer Cell

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roth J.A., Cristiano R.J. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997; 89: 21–39.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Fagin J.A. Perspective: lesson learned from molecular genetic studies of thyroid cancer-insights into pathogenesis and tumor-specific therapeutic targets. Endocrinology 2002; 143: 2025–2028.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Scala S., Portella G., Fedele M., Chiappetta G., Fusco A. Adenovirus-mediated suppression of HMG(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci USA 2000; 97: 4256–4261.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Cerutti J., Trapasso F., Battaglia C., Zhang L., Martelli M.L., Visconti R., Berlingieri M.T., Fagin J.A., Santoro M., Fusco A. Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin Cancer Res 1996; 2:119–126.

    CAS  PubMed  Google Scholar 

  5. Levine A.J. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Fagin J.A., Matsuo K., Karmakar A., Chen D.L., Tang S.H., Koeffler H.P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993; 91: 179–184.

    CAS  PubMed  Google Scholar 

  7. Donghi R., Longoni A., Pilotti S., Michieri P., Porta G.D., Pierotti M.A. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 1993; 91: 1753–1760.

    CAS  PubMed  Google Scholar 

  8. Ito T., Seyama T., Mizuno T., Tsuyama N., Hayashi T., Hayashi Y., Dohi K., Nakamura N., Akiyama M. Unique association of p53 mutations with undifferentiated but not differentiated carcinomas of the thyroid. Cancer Res 1992; 52: 1369–1371.

    CAS  PubMed  Google Scholar 

  9. Battista S., Martelli S., Fedele M., Chiappetta G., Trapasso F., De Vita G., Battaglia C., Santoro M., Viglietto G., Fagin J.A. A mutated p53 gene alters thyroid cell differentiation. Oncogene 1995; 16: 2029–2037.

    Google Scholar 

  10. Fagin J.A., Tang S.H., Zeki K., Lauro R., Fusco A., Gonsky R. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res 1996; 56: 765–771.

    CAS  PubMed  Google Scholar 

  11. Morreti F, Farsetti A., Soddu S., Misiti S., Crescenzi M., Filetti S., Andreoli M., Sacchi A., Pontecorvi A. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 1997; 14: 729–740.

    Google Scholar 

  12. Yang T.-T., Namba H., Hara T., Takamura N., Nagayama Y., Fukata S., Ishikawa N., Kuma K., Ito K., Yamashita S. p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 1997; 14: 1511–1519.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Velasco J.A., Medina D.L., Romero J., Mato M.E., Santisteban P. Introduction of p53 induces cell-cycle arrest in p53-deficient human medullary thyroid-carcinoma cells. Int J Cancer 1997; 73: 449–455.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Kim S.-B., Ahn I.-M., Park H.-J., Park J.-S., Cho H.-J., Gong G., Suh C., Lee J.-S., Kim W.-K., Kim S.-H. Growth inhibition and chemosensitivity of poorly differentiated human thyroid cancer cell line (NPA) transfected with p53 gene. Head & Neck 2001; 23: 223–229.

    CAS  Google Scholar 

  15. Narimatsu M., Nagayama Y., Akino K., Yasuda M., Yamamoto T., Yang T.-T., Ohtsuru A., Namba H., Ayabe H., Yamashita S., Niwa M. Therapeutic usefulness of wild-type p53 gene introduction in a p53-null anaplastic thyroid carcinoma cell line. J Clin Endocrinol Metab 1998; 83: 3668–3672.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Nagayama Y., Shigematsu K., Namba H., Zeki K., Yamashita S., Niwa M. Inhibition of angiogenesis and tumorigenesis, and induction of dormancy by p53 in a p53-null thyroid carcinoma cell line in vivo. Anticancer Res 2000; 20: 2723–2728.

    CAS  PubMed  Google Scholar 

  17. Blagosklonny M.V., Giannakakou P., Wojtowicz M., Romanova L.Y., Ain K.B., Bates S.E., Fojo T. Effects of p53-expressing adenovirus on the chemosensitivity and differentiation of anaplastic thyroid cancer cells. J Clin Endocrinol Metab 1998; 83: 2516–2522.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Nagayama Y., Yokoi H., Takeda K., Hasegawa M., Nishihara E., Namba H., Yamashina S., Niwa M. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J Clin Endocrinol Metab 2000; 85: 4081–4086.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Imanishi R., Ohtsuru A., Iwamatsu M., Lioka T., Namba H., Seto S., Yano K., Yamashita S. A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy. J Clin Endocrinol Metab 2002; 87: 4821–4824.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Davis B.M., Koc O.N., Lee k., Gerson S.L. Current progress in the gene therapy of cancer. Cur Opin Oncol 1996; 8: 499–508.

    CAS  Google Scholar 

  21. Nishihara E., Nagayama Y., Watanabe M., Narimatsu M., Namba H., Niwa M., Yamashita S. Treatment of thyroid carcinoma cells with four different suicide gene/prodrug combinations in vitro. Anticancer Res 1998; 18: 1521–1526.

    CAS  PubMed  Google Scholar 

  22. Nishihara E., Nagayama Y., Mawatari F., Tanaka K., Naniba H., Niwa M., Yamashita S. Retrovirus-mediated herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo. Endocrinology 1997; 138: 4577–4583.

    CrossRef  CAS  PubMed  Google Scholar 

  23. van der Eb M.M., Cramer S.J., Vergouwe Y, Schagen F.H., van Krieken J.H., van der Eb A.J., Rinkers I.H., van de Velde C.J., Hoeben R.C. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther 1998; 5: 451–458.

    PubMed  Google Scholar 

  24. Wallace H., Ledent C., Vassart G., Bishop J.O., Al-Shawi R. Specific ablation of thyroid follicle cells in adult transgenic mice. Endocrinology 1991; 129: 3217–3226.

    CAS  PubMed  Google Scholar 

  25. Zeiger M., Takiyama Y., Bishop J.O., Ellison A.R., Saji M., Levine M.A. Adenoviral infection of thyroid cells: a rationale for gene therapy for metastatic thyroid carcinoma. Surgery 1996; 120: 921–925.

    CAS  PubMed  Google Scholar 

  26. Braiden V, Nagayama Y, Iitaka M., Namba H., Niwa M., Yamashita S. Retrovirus-mediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter. Endocrinology 1998; 139: 3996–3999.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Zhang R., Straus F, DeGroot L.J. Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity. Thyroid 2001; 11: 115–123.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Zhang R., Straus F.H., DeGroot L.J. Cell-specific viral gene therapy of a Hurthle cell tumor. J Clin Endocrinol Metab 2002; 87:1407–14.

    CAS  PubMed  Google Scholar 

  29. Nagayama Y, Nishihara E., Iitaka M., Namba H., Yamashita S., Niwa M. Enhanced efficacy of tran-scriptionally targeted suicide gene/prodrug therapy for thyroid carcinoma with the Cre-loxP system. Cancer Res 1999 59: 3049–3052.

    CAS  PubMed  Google Scholar 

  30. Takeda T., Yamazaki M., Minemura K., Imai Y, Inaba H., Suzuki S., Miyamoto T., Ichikawa K., Kakizawa T., Mori J., DeGroot L.J., Hashizume K. A tandemly repeated thyroglobulin core promoter has potential to enhance efficacy for tissue-specific gene therapy for thyroid carcinoma. Cancer Gene Ther 2002; 9: 864–874.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Chun Y.S., Saji M., Zeiger M.A. Overexpression of TTF-1 and PAX-8 restores thyroglobulin gene promoter activity in ARO and WRO cell lines. Surgery 1998; 124: 1100–1105.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Shimura H., Suzuki H., Miyazaki A., Furuya F, Ohta K., Haraguchi K., Endo T, Onaya T. Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells. Cancer Res 2001; 61: 3640–3646.

    CAS  PubMed  Google Scholar 

  33. Kitazono M., Chuman Y, Aikou T., Fojo T. Construction of gene therapy vectors targeting thyroid cells: enhancement of activity and specificity with histone dcacetylase inhibitors and agents modulating the cyclic adenosine 3’,5’-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 2001; 86: 834–840.

    CAS  PubMed  Google Scholar 

  34. Kitazono M., Chuman Y, Aikou T., Fojo T. Adenovirus HSV-TK construct with thyroid-specific promoter: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cAMP pathway. Int J Cancer 2002; 99: 453–459.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Zhang R., DeGroot L.J. Gene therapy of established medullary thyroid carcinoma with herpes simplex viral thymidine kinase in a rat tumor model: relationship of bystander effect and antitumor efficacy. Thyroid 2000; 10: 313–319.

    CAS  PubMed  Google Scholar 

  36. Minemura K. Takeda T., Minemura K., Nagasawa T., Zhang R., Leopardi R., DeGroot L.J. Cell-specific induction of sensitivity to ganciclovir in medullary thyroid carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase. Endocrinology 2000; 1814–1822.

    Google Scholar 

  37. Soler M.N., Bobe P., Benohoud K., Lemaire G., Roos A., Lausson S. Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection. J Gene Med 2000; 2: 344–352.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Lausson S., Fournes B., Borrel C., Milhaud G., Treilhou-Lahille F. Immune response against medullary thyroid carcinoma induced by parental and/or interleukin-2-secreting MTC cells in a rat model of human familial MTC. Cancer Immunol Immunother 1996; 43: 116–123.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Zhang R., Baunoch D., DeGroot L.J. Genetic immunotherapy for medullary thyroid carcinoma: destruction of tumors in mice by in vivo delivery of adenovirus vector transducing the murine interleukin-2 gene. Thyroid 1998; 8: 1137–11464.

    CAS  PubMed  Google Scholar 

  40. Zhang R., Minemura K., DeGroot L.J. Immunotherapy for medullary thyroid carcinoma by a replication-defective adenovirus transducing murine IL-2. Endocrinology 1998; 139: 601–608.

    CAS  PubMed  Google Scholar 

  41. Zhang R., Straus F.H., DeGroot L.J. Effective genetic therapy of established medullary thyroid carcinomas with murine interleukin-2: dissemination and cytotoxicity studies in a rat model. Endocrinology 1999; 140: 2152–2158.

    CAS  PubMed  Google Scholar 

  42. Zhang R., DeGroot L.J. Genetic immunotherapy of established tumours with adenovirus vectors transducing murine interleukin-12 subunits in a rat medullary thyroid carcinoma model. Clin Endocrinol 2000; 52: 687–694.

    CrossRef  CAS  Google Scholar 

  43. Yamazaki M., Zhang R., Straus F.H., Messina M., Robinson B.G., Hashizume K. DeGroot L.J. Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus inducing tumor-specific expression of interleukin-12. Gene Therapy 2002; 9: 64–74.

    CrossRef  CAS  PubMed  Google Scholar 

  44. Zhang R., DeGroot L.J. Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing murine interleukin-12. Endocrinology 2003; 144:1393–8.

    CAS  PubMed  Google Scholar 

  45. Soler M.N., Milhaud G., Lekmine F., Treilhou-Lahille F., Klatzmann D., Lausson S. Treatment of medullary thyroid carcinoma by combined expression of suicide and interleukin-2 genes. Cancer Immunol Immunother 1999; 48: 91–99.

    CrossRef  CAS  PubMed  Google Scholar 

  46. Zhang R., DeGroot L.J. An adenoviral vector expressing functional heterologous proteins herpes simplex viral thymidine kinase and human interleukin-2 has enhanced in vivo antitumor activity against medullar thyroid carcinoma. Endocr Relat Cancer 2001; 8: 315–325.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Barzon L., Bonaguro R., Castagliuolo I., Chilosi M., Franchin E., Del Vecchio C., Giaretta I., Boscaro M., Palu G. Gene therapy of thyroid cancer via retrovirally-driven combined expression of human interleukin-2 and herpes simplex virus thymidine kinase. Eur J Endocrinol 2003; 148: 73–80.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Haupt K., Siegel F., Lu M., Yang D., Hilken G., Mann K., Roggendorf M., Sailer B. Induction of a cellular and humoral immune response against preprocalcitonin by genetic immunization: a potential new treatment for medullary thyroid carcinomas. Endocrinology 2001; 142: 1017–1023.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Heise C., Kirn D.H. Replication-selective adenoviruses as oncolytic agents. J Clin Invest 2000; 105: 847–851.

    CAS  PubMed  Google Scholar 

  50. Bischoff J.R., Kirn D.H., Willimas A., Heise C., Horn S., Muna M., Ng L., Nye J.A., Sampson-Johannes A., Fattaey A., McCormick F. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    CrossRef  CAS  PubMed  Google Scholar 

  51. Portella G., Scala S., Vitagliano D., Vecchio G., Fusco A. ONYX-015, an E1B gene-defective adenovirus, induces cell death in human anaplastic thyroid carcinoma cell lines. J Clin Endocrinol Metab 2002; 87: 2525–2531.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Nagayama Y, Nishihara E., Namba H., Yokoi H., Hasegawa M., Mizuguchi H., Hayakawa T, Yamashita S., Niwa M. Targeting the replication of adenovirus to p53-defective thyroid carcinoma with a p53-regulated Cre-loxP system. Cancer Gene Ther 2001; 8: 36–44.

    CAS  PubMed  Google Scholar 

  53. Prabakaran I., Kesmodel S.B., Menon C., Molnar-Kimber K., Fraker D.L. A replication-selective adenoviral vector driven by the human Tg promoter-enhancer is selective for Tg+ thyroid cancer cells. Abstract for 93rd Annual Meeting of American Association for Cancer Research 2002;43: #3782.

    Google Scholar 

  54. Hermiston T.W, Kuhn I. Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9: 1022–1035.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Kong H.-L., Crystal R.G. Gene therapy strategies for tumor antiangiogenesis. J Natl Cancer Inst 1998; 90: 273–286.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Dai G., Levy O., Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996; 379: 458–460.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Scott V.C., Wang R., Kreman T.M., Sheffield V.C., Karnishki L.P. The Pendred syndrome gene encodes a chloride-iodide transporter. Nat Genet 1999; 21: 440–443.

    CAS  PubMed  Google Scholar 

  58. Spitzweg C., Harrington K.J., Pinke L.A., Vile R.G., Morris J.C. The sodium iodide symporter and its potential role in cancer therapy. J Clin Endocrinol Metab 2001; 86: 3327–3335.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Heufelder A.E., Morgenthaler N., Schipper M.L., Joba W. Sodium iodide symporter-based strategies for diagnosis and treatment of thyroid and nonthyroid malignancies. Thyroid 2001; 11: 839–847.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Shimura H., Haraguchi K., Miyazaki A., Endo T, Onaya T. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I- symporter gene. Endocrinology 1997; 138: 4493–4496.

    CAS  PubMed  Google Scholar 

  61. Spitzweg C., O’Connor M.K., Bergert E.R., Tindall D.J., Young C.Y.F., Morris J.C. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000; 60: 6526–6530.

    CAS  PubMed  Google Scholar 

  62. Cho J.-Y, Shen D.H.Y., Yang W., Williams B., Buckwalter T.L.F., La Perle K.M.D., Hinkle G., Pozderac R., Kloos R., Nagaraja H.N., Barth R.F., Jhiang S.M. In vivo imaging and radioiodide therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther 2002; 9:1139–1145.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Huang M., Batra R.K., Kogai T., Lin Y.Q., Hershman J.M., Lichtenstein A., Sharma S., Zhu L.X., Brent G.A., Dubinett S.M. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther 2001; 8: 612–618.

    CAS  PubMed  Google Scholar 

  64. Zarnegar R., Brunaud L., Kanauchi H., Wong M., Fung M., Ginzinger D., Duh Q.Y., Clark O.H. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using Trichostatin A, a histone deacetylase inhibitor. Surgery 2002; 132: 984–90.

    CrossRef  PubMed  Google Scholar 

  65. Tazebay U.H., Wapnir I.L., Levy O., Dohan O., Zuckier L.S., Hhua Zhao Q., Fu Deng H., Amenta P.S., Fineberg S., Pestell R.G., Carrasco N. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 2000; 6: 871–878.

    CAS  PubMed  Google Scholar 

  66. Nemunaitis J., Cunningham C., Buchanan A., Blackburn A., Edelman G., Maples P., Netto G., Tong A., Randlev B., Olson S., Kirn D. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 2001; 8: 746–759.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Nagayama, Y. (2005). Gene Therapy for Thyroid Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_21

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics