Skip to main content

Diagnostic Molecular Markers in Thyroid Cancer

  • Chapter

Part of the Cancer Treatment and Research book series (CTAR,volume 122)

Summary

The use of molecular assays to analyze clinical tissues in the diagnosis and management of thyroid cancer, similar to other tumors, will likely allow for more accurate characterization of the aggressiveness of individual tumors and may allow for the early diagnosis of recurrence. The application of these methods to thyroid nodules and nodal metastases is less encumbered by difficulties arising from amplification of transcripts in non-thyroid cells. For these tissues, these assays are likely to be used clinically in the near-future. New data arising from cDNA arrays identifying novel markers of malignancy or tumor aggressiveness make this a growing area of interest. The use of molecular assays in diagnosing distant metastases is more problematic due to issues with ectopic expression of either full length or splice variants of genes thought to be thyroid-specific. Assay quantitation is a complex problem owing to variability in the level of expression of “housekeeping” genes and the variety of phlebotomy and RT-PCR methods reported. Additional research in this area is clearly required before a recommendation can be given regarding clinically applicability of these tests.

Keywords

  • Thyroid Cancer
  • Thyroid Carcinoma
  • Papillary Thyroid Carcinoma
  • Thyroid Nodule
  • Papillary Thyroid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. Specific association of human telomerase activity with immortal cells and cancer. Science, 266: 2011–2015, 1994.

    CAS  PubMed  Google Scholar 

  2. Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., and et al. The RNA component of human telomerase. Science, 269: 1236–1241, 1995.

    CAS  PubMed  Google Scholar 

  3. Saji, M., Westra, W. H., Chen, H., Umbricht, C. B., Tuttle, R. M., Box, M. F., Udelsman, R., Sukumar, S., and Zeiger, M. A. Telomerase activity in the differential diagnosis of papillary carcinoma of the thyroid. Surgery, 122: 1137–1140, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Haugen, B. R., Nawaz, S., Markham, N., Hashizumi, T., Shroyer, A. L., Werness, B., and Shroyer, K. R. Telomerase activity in benign and malignant thyroid tumors. Thyroid, 7: 337–342, 1997.

    CAS  PubMed  Google Scholar 

  5. Onoda, N., Ishikawa, T., Yoshikawa, K., Sugano, S., Kato, Y., Sowa, M., and Hirakawa-Yong Suk Chung, K. Telomerase activity in thyroid tumors. Oncol Rep, 5: 1447–1450, 1998.

    CAS  PubMed  Google Scholar 

  6. Umbricht, C. B., Saji, M., Westra, W. H., Udelsman, R., Zeiger, M. A., and Sukumar, S. Telomerase activity: a marker to distinguish follicular thyroid adenoma from carcinoma. Cancer Res, 57: 2144–2147, 1997.

    CAS  PubMed  Google Scholar 

  7. De Deken, X., Vilain, C., Van Sande, J., Dumont, J. E., and Miot, F. Decrease of telomere length in thyroid adenomas without telomerase activity. J Clin Endocrinol Metab, 83: 4368–4372, 1998.

    PubMed  Google Scholar 

  8. Saji, M., Xydas, S., Westra, W. H., Liang, C. K., Clark, D. P., Udelsman, R., Umbricht, C. B., Sukumar, S., and Zeiger, M. A. Human telomerase reverse transcriptase (hTERT) gene expression in thyroid neoplasms. Clin Cancer Res, 5: 1483–1489, 1999.

    CAS  PubMed  Google Scholar 

  9. Siddiqui, M. T., Greene, K. L., Clark, D. P., Xydas, S., Udelsman, R., Smallridge, R. C., Zeiger, M. A., and Saji, M. Human telomerase reverse transcriptase expression in Diff-Quik-stained FNA samples from thyroid nodules. Diagn Mol Pathol, 10: 123–129, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Sebesta, J., Brown, T., Williard, W., Dehart, M. J., Aldous, W., Kavolius, J., and Azarow, K. Does telomerase activity add to the value of fine needle aspirations in evaluating thyroid nodules? Am J Surg, 181:420–422, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Brousset, P., Chaouche, N., Leprat, F., Branet-Brousset, F., Trouette, H., Zenou, R. C., Merlio, J. P., and Delsol, G. Telomerase activity in human thyroid carcinomas originating from the follicular cells. J Clin Endocrinol Metab, 82: 4214–4216, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Cheng, A. J., Lin, J. D., Chang, T., and Wang, T. C. Telomerase activity in benign and malignant human thyroid tissues. Br J Cancer, 77: 2177–2180, 1998.

    CAS  PubMed  Google Scholar 

  13. Huang, Y., Prasad, M., Lemon, W. J., Hampel, H., Wright, F. A., Kornacker, K., LiVolsi, V., Frankel, W., Kloos, R. T., Eng, C., Pellegata, N. S., and de la Chapelle, A. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA, 98: 15044–15049, 2001.

    CAS  PubMed  Google Scholar 

  14. Xu, X. C., el-Naggar, A. K., and Lotan, R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol, 147: 815–822, 1995.

    CAS  PubMed  Google Scholar 

  15. Fernandez, P. L., Merino, M. J., Gomez, M., Campo, E., Medina, T., Castronovo, V., Sanjuan, X., Cardesa, A., Liu, F. T., and Sobel, M. E. Galectin-3 and laminin expression in neoplastic and non-neoplastic thyroid tissue. J Pathol, 181: 80–86, 1997.

    CAS  PubMed  Google Scholar 

  16. Orlandi, F., Saggiorato, E., Pivano, G., Puligheddu, B., Termine, A., Cappia, S., De Giuli, P., and Angeli, A. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res, 58: 3015–3020, 1998.

    CAS  PubMed  Google Scholar 

  17. Herrmann, M. E., LiVolsi, V. A., Pasha, T.L., Roberts, S. A., Wojcik, E. M., and Baloch, Z. W Immunohistochemical expression of galectin-3 in benign and malignant thyroid lesions. Arch Pathol Lab Med, 126: 710–713, 2002.

    CAS  PubMed  Google Scholar 

  18. Bernet, V. J., Anderson, J., Vaishnav, Y., Solomon, B., Adair, C. F., Saji, M., Burman, K. D., Burch, H. B., and Ringel, M. D. Determination of galectin-3 messenger ribonucleic Acid overexpression in papillary thyroid cancer by quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab, 87: 4792–4796, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  19. De Micco, C., Zoro, P., Garcia, S., Skoog, L., Tani, E. M., Carayon, P., and Henry, J. F. Thyroid peroxidase immunodetection as a tool to assist diagnosis of thyroid nodules on fine-needle aspiration biopsy. Eur J Endocrinol, 131: 474–479, 1994.

    PubMed  Google Scholar 

  20. Christensen, L., Blichert-Toft, M., Brandt, M., Lange, M., Bjerregaard Sneppen, S., Ravnsbaek, J., Mollerup, C. L., Strange, L., Jensen, F., Kirkegaard, J., Sand Hansen, H., Sorensen, S. S., and Feldt-Rasmussen, U. Thyroperoxidase (TPO) immunostaining of the solitary cold thyroid nodule. Clin Endocrinol (Oxf), 53: 161–169, 2000.

    CrossRef  CAS  Google Scholar 

  21. Krohn, K. and Paschke, R. Loss of heterozygocity at the thyroid peroxidase gene locus in solitary cold thyroid nodules. Thyroid, 11: 741–747, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Higashiyama, T., Takano, T., Matsuzuka, F., Liu, G., Miyauchi, A., Yokozawa, T., Morita, S., Kuma, K., Shiba, E., Noguchi, S., and Amino, N. Measurement of the expression of oncofetal fibronectin mRNA in thyroid carcinomas by competitive reverse transcription-polymerase chain reaction. Thyroid, 9: 235–240, 1999.

    CAS  PubMed  Google Scholar 

  23. Takano, T., Matsuzuka, F., Miyauchi, A., Yokozawa, T., Liu, G., Morita, S., Kuma, K., and Amino, N. Restricted expression of oncofetal fibronectin mRNA in thyroid papillary and anaplastic carcinoma: an in situ hybridization study. Br J Cancer, 78: 221–224, 1998.

    CAS  PubMed  Google Scholar 

  24. Takano, T., Miyauchi, A., Yokozawa, T., Matsuzuka, F., Liu, G., Higashiyama, T., Morita, S., Kuma, K., and Amino, N. Accurate and objective preoperative diagnosis of thyroid papillary carcinomas by reverse transcription-PCR detection of oncofetal fibronectin messenger RNA in fine-needle aspiration biopsies. Cancer Res, 58: 4913–4917, 1998.

    CAS  PubMed  Google Scholar 

  25. Takano, T., Miyauchi, A., Matsuzuka, F., Kuma, K., and Amino, N. Expression of oncofetal fibronectin messenger ribonucleic acid in fibroblasts in the thyroid: a possible cause of false positive results in molecular-based diagnosis of thyroid carcinomas. J Clin Endocrinol Metab, 85: 765–768, 2000.

    CAS  PubMed  Google Scholar 

  26. Cheung, C. C., Carydis, B., Ezzat, S., Bedard, Y. C., and Asa, S. L. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab, 86: 2187–2190, 2001.

    CAS  PubMed  Google Scholar 

  27. Elisei, R., Romei, C., Vorontsova, T., Cosci, B., Veremeychik, V., Kuchinskaya, E., Basolo, F., Demidchik, E. P., Miccoli, P., Pinchera, A., and Pacini, F. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab, 86: 3211–3216, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Fusco, A., Chiappetta, G., Hui, P., Garcia-Rostan, G., Golden, L., Kinder, B. K., Dillon, D. A., Giuliano, A., Cirafici, A. M., Santoro, M., Rosai, J., and Tallini, G. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol, 160: 2157–2167, 2002.

    CAS  PubMed  Google Scholar 

  29. Kroll, T. G., Sarraf, P., Pecciarini, L., Chen, C. J., Mueller, E., Spiegelman, B. M., and Fletcher, J. A. PAX8-PPARgammal fusion oncogene in human thyroid carcinoma [corrected]. Science, 289: 1357–1360, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Marques, A. R., Espadinha, C., Catarino, A. L., Moniz, S., Pereira, T., Sobrinho, L. G., and Leite, V. Expression of PAX8-PPARgammal Rearrangements in Both Follicular Thyroid Carcinomas and Adenomas. J Clin Endocrinol Metab, 87: 3947–3952, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Cheung, L., Messina, M., Gill, A., Clarkson, A., Learoyd, D., Delbridge, L., Wentworth, J., Philips, J., Clifton-Bligh, R., and Robinson, B. G. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab, 88: 354–357, 2003.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Cohen, Y, Xing, M., Mambo, E., Guo, Z., Wu, G., Trink, B., Beller, U, Westra, W. H., Ladenson, P. W., and Sidransky, D. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst, 95: 625–627, 2003.

    CAS  PubMed  Google Scholar 

  33. Kimura, E. T., Nikiforova, M. N., Zhu, Z., Knauf J. A., Nikiforov, Y. E., and Fagin, J. A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res, 63: 1454–1457, 2003.

    CAS  PubMed  Google Scholar 

  34. Xu, X., Quiros, R. M., Gattuso, P., Am, K. B., and Prinz, R. A. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res, 63: 4561–4567, 2003.

    CAS  PubMed  Google Scholar 

  35. Bevilacqua, G., Sobel, M. E., Liotta, L. A., and Steeg, P. S. Association of low nm23 RNA levels in human primary infiltrating ductal breast carcinomas with lymph node involvement and other histopathological indicators of high metastatic potential. Cancer Res, 49: 5185–5190, 1989.

    CAS  PubMed  Google Scholar 

  36. Zou, M., Shi, Y, al-Sedairy, S., and Farid, N. R. High levels of Nm23 gene expression in advanced stage of thyroid carcinomas. Br J Cancer, 68: 385–388, 1993.

    CAS  PubMed  Google Scholar 

  37. Farley, D. R., Eberhardt, N. L., Grant, C. S., Schaid, D. J., van Heerden, J. A., Hay, I. D., and Khosla, S. Expression of a potential metastasis suppressor gene (nm23) in thyroid neoplasms. World J Surg, 17: 615–620; discussion 620-611, 1993.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Bertheau, P., De La Rosa, A., Steeg, P. S., and Merino, M. J. NM23 protein in neoplastic and non-neoplastic thyroid tissues. Am J Pathol, 145: 26–32, 1994.

    CAS  PubMed  Google Scholar 

  39. Shi, Y, Zou, M., and Farid, N. R. The mystery of nm23H1 in thyroid cancer. J Endocrinol Invest, 25: 663–664, 2002.

    CAS  PubMed  Google Scholar 

  40. Chiappetta, G., Tallini, G., De Biasio, M. C., Manfioletti, G., Martinez-Tello, F. J., Pentimalli, F., de Nigris, F., Mastro, A., Botti, G., Fedele, M., Berger, N., Santoro, M., Giancotti, V, and Fusco, A. Detection of high mobility group I HMGI (Y) protein in the diagnosis of thyroid tumors: HMGI (Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res, 58: 4193–4198, 1998.

    CAS  PubMed  Google Scholar 

  41. Tuccari, G. and Barresi, G. Immunohistochemical demonstration of ceruloplasmin in follicular adenomas and thyroid carcinomas. Histopathology, 11: 723–731, 1987.

    CAS  PubMed  Google Scholar 

  42. Permanetter, W., Nathrath, W. B., and Lohrs, U. Immunohistochemical analysis of thyroglobulin and keratin in benign and malignant thyroid tumours. Virchows Arch A Pathol Anat Histopathol, 398: 221–228, 1982.

    CrossRef  CAS  PubMed  Google Scholar 

  43. Schelfhout, L. J., Van Muijen, G. N., and Fleuren, G. J. Expression of keratin 19 distinguishes papillary thyroid carcinoma from follicular carcinomas and follicular thyroid adenoma. Am J Clin Pathol, 92: 654–658, 1989.

    CAS  PubMed  Google Scholar 

  44. Sahoo, S., Hoda, S. A., Rosai, J., and DeLellis, R. A. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol, 116: 696–702, 2001.

    CAS  PubMed  Google Scholar 

  45. Haber, R. S., Weiser, K. R., Pritsker, A., Reder, I., and Burstein, D. E. GLUT1 glucose transporter expression in benign and malignant thyroid nodules. Thyroid, 7: 363–367, 1997.

    CAS  PubMed  Google Scholar 

  46. Wang, W., Larson, S. M., Tuttle, R. M., Kalaigian, H., Kolbert, K., Sonenberg, M., and Robbins, R. J. Resistance of [18f]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid, 11: 1169–1175, 2001.

    CAS  PubMed  Google Scholar 

  47. van Hoeven, K. H., Kovatich, A. J., and Miettinen, M. Immunocytochemical evaluation of HBME-1, CA 19-9, and CD-15 (Leu-M1) in fine-needle aspirates of thyroid nodules. Diagn Cytopathol, 18: 93–97, 1998.

    PubMed  Google Scholar 

  48. Casey, M. B., Lohse, C. M., and Lloyd, R. V. Distinction between papillary thyroid hyperplasia and papillary thyroid carcinoma by immunohistochernical staining tor cytokcratin 19, galectin-3, and HBME-1. Endocr Pathol, 14: 55–60, 2003.

    CrossRef  PubMed  Google Scholar 

  49. Mai, K. T., Bokhary, R., Yazdi, H. M., Thomas, J., and Commons, A. S. Reduced HBME-1 immunoreactivity of papillary thyroid carcinoma and papillary thyroid carcinoma-related neoplastic lesions with Hurthle cell and/or apocrine-like changes. Histopathology, 40: 133–142, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Mase, T., Funahashi, H., Koshikawa, T., Imai, T., Nara, Y., Tanaka, Y., and Nakao, A. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J, 50: 173–177, 2003.

    CrossRef  PubMed  Google Scholar 

  51. Trovato, M., Villari, D., Ruggeri, R. M., Quattrocchi, E., Fragetta, F., Simone, A., Scarfi, R., Magro, G., Batolo, D., Trimarchi, F., and Benvenga, S. Expression of CD30 ligand and CD30 receptor in normal thyroid and benign and malignant thyroid nodules. Thyroid, 11: 621–628, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Cheifetz, R. E., Davis, N. L., Robinson, B. W, Berean, K. W, and LeRiche, J. C. Differentiation of thyroid neoplasms by evaluating epithelial membrane antigen, Leu-7 antigen, epidermal growth factor receptor, and DNA content. Am J Surg, 167: 531–534, 1994.

    CrossRef  CAS  PubMed  Google Scholar 

  53. Khan, A., Baker, S. P., Patwardhan, N. A., and Pullman, J. M. CD57 (Leu-7) expression is helpful in diagnosis of the follicular variant of papillary thyroid carcinoma. Virchows Arch, 432: 427–432, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Specht, M. C., Tucker, O. N., Hocever, M., Gonzalez, D., Teng, L., and Fahey, T. J., 3rd Cyclooxygenase-2 expression in thyroid nodules. J Clin Endocrinol Metab, 87: 358–363, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Xing, M., Usadel, H., Cohen, Y, Tokumaru, Y., Guo, Z., Westra, W. B., Tong, B. C., Tallini, G., Udelsman, R., Califano, J. A., Ladenson, P. W., and Sidransky, D. Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res, 63: 2316–2321, 2003.

    CAS  PubMed  Google Scholar 

  56. Arturi, F., Russo, D., Giuffrida, D., Ippolito, A., Perrotti, N., Vigneri, R., and Filetti, S. Early diagnosis by genetic analysis of differentiated thyroid cancer metastases in small lymph nodes. J Clin Endocrinol Metab, 82: 1638–1641, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Gubala, E., Handkiewicz-Junak, D., Zeman, M., Chmielik, E., Wiench, M., and Jarzab, B. [Thyroglobulin RT-PCR method for detection of lymph node metastases during the course of differentiated thyroid cancers]. Wiad Lek, 54 Suppl 1: 349–356, 2001.

    PubMed  Google Scholar 

  58. Weber, T., Lacroix, J., Weitz, J., Amnan, K., Magener, A., Holting, T., Klar, E., Herfarth, C., and von Knebel Doeberitz, M. Expression of cytokeratin 20 in thyroid carcinomas and peripheral blood detected by reverse transcription polymerase chain reaction. Br J Cancer, 82: 157–160, 2000.

    CAS  PubMed  Google Scholar 

  59. Weber, T. and Klar, E. Minimal residual disease in thyroid carcinoma. Semin Surg Oncol, 20: 272–277, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Weber, T., Amann, K., Weckauf, H., Lacroix, J., Weitz, J., Schonfuss, T., Holting, T., Klar, E., Herfarth, C., and von Knebel Doeberitz, M. Detection of disseminated medullary thyroid carcinoma cells in cervical lymph nodes by cytokeratin 20 reverse transcription-polymerase chain reaction. World J Surg, 26: 148–152, 2002.

    PubMed  Google Scholar 

  61. Weber, T., Lacroix, J., Worner, S., Weckauf, H., Winkler, S., Hinz, U, Schilling, T., Frank-Raue, K., Klar, E., and Knebel Doeberitz Mv, M. Detection of hematogenic and lymphogenic tumor cell dissemination in patients with medullary thyroid carcinoma by cytokeratin 20 and preprogastrin-releasing peptide RT-PCR. Int J Cancer, 103: 126–131, 2003.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Saller, B., Feldmann, G., Haupt, K., Broecker, M., Janssen, O. E., Roggendorf, M., Mann, K., and Lu, M. RT-PCR-based detection of circulating calcitonin-producing cells in patients with advanced medullary thyroid cancer. J Clin Endocrinol Metab, 87: 292–296, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Bostick, P.J., Morton, D. L., Turner, R. R., Huynh, K. T., Wang, H.J., Elashoff, R., Essner, R., and Hoon, D. S. Prognostic significance of occult metastases detected by sentinel lymphadenectomy and reverse transcriptase-polymerase chain reaction in early-stage melanoma patients. J Clin Oncol, 17: 3238–3244, 1999.

    CAS  PubMed  Google Scholar 

  64. Hochberg, M., Lotem, M., Gimon, Z., Shiloni, E., and Enk, C. D. Expression of tyrosinase, MIA and MARX-1 in sentinel lymph nodes of patients with malignant melanoma. Br J Dermatol, 146: 244–249, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Torrens J. I. and Burch, H. B. Serum thyroglobulin measurement. Utility in clinical practice. Endocrinol Metab Clin North Am, 30: 429–467, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Ditkoff, B. A., Marvin, M. R., Yemul, S., Shi, Y. J., Chabot, J., Feind, C., and Lo Gerfo, P. L. Detection of circulating thyroid cells in peripheral blood. Surgery, 120: 959–964; discussion 964-955, 1996.

    CAS  PubMed  Google Scholar 

  67. Tallini, G., Ghossein, R. A., Emanuel, J., Gill, J., Kinder, B., Dimich, A. B., Costa, J., Robbins, R., Burrow, G. N., and Rosai, J. Detection of thyroglobulin, thyroid peroxidase, and RET/PTC1 mRNA transcripts in the peripheral blood of patients with thyroid disease. J Clin Oncol, 16: 1158–1166, 1998.

    CAS  PubMed  Google Scholar 

  68. Ringel, M. D., Ladenson, P. W., and Levine, M. A. Molecular diagnosis of residual and recurrent thyroid cancer by amplification of thyroglobulin messenger ribonucleic acid in peripheral blood. J Clin Endocrinol Metab, 83: 4435–4442, 1998.

    CAS  PubMed  Google Scholar 

  69. Bellantone, R., Lombardi, C. P., Bossola, M., Ferrante, A., Princi, P., Boscherini, M., Maussier, L., Salvatori, M., Rufini, V., Reale, F., Romano, L., Tallini, G., Zelano, G., and Pontecorvi, A. Validity of thyroglobulin mRNA assay in peripheral blood of postoperative thyroid carcinoma patients in predicting tumor recurrences varies according to the histologic type: results of a prospective study. Cancer, 92: 2273–2279, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Biscolla, R. P., Cerutti, J. M., and Maciel, R. M. Detection of recurrent thyroid cancer by sensitive nested reverse transcription-polymerase chain reaction of thyroglobulin and sodium/iodide symporter messenger ribonucleic acid transcripts in peripheral blood. J Clin Endocrinol Metab, 85: 3623–3627, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  71. Fugazzola, L., Mihalich, A., Persani, L., Cerutti, N., Reina, M., Bonomi, M., Ponti, E., Mannavola, D., Giammona, E., Vannucchi, G., di Blasio, A. M., and Beck-Peccoz, P. Highly sensitive serum thyroglobulin and circulating thyroglobulin mRNA evaluations in the management of patients with differentiated thyroid cancer in apparent remission. J Clin Endocrinol Metab, 87: 3201–3208, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  72. Grammatopoulos, D., Elliott, Y, Smith, S. C., Brown, I., Grieve, R.J., Hillhouse, E. W., Levine, M. A., and Ringel, M. D. Measurement of thyroglobulin mRNA in peripheral blood as an adjunctive test for monitoring thyroid cancer. Mol Pathol, 56: 162–166, 2003.

    CAS  PubMed  Google Scholar 

  73. Bojunga, J., Roddiger, S., Stanisch, M., Kusterer, K., Kurek, R., Renneberg, H., Adams, S., Lindhorst, E., Usadel, K. H., and Schumm-Draeger, P. M. Molecular detection of thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease by RT-PCR. Br J Cancer, 82: 1650–1655, 2000.

    CAS  PubMed  Google Scholar 

  74. Roddiger, S. J., Bojunga, J., Klee, V., Stanisch, M., Renneberg, H., Lindhorst, E., Usadel, K. H., Kusterer, K., Schumm-Draeger, P. M., and Kurek, R. Detection of thyroid peroxidase mRNA in peripheral blood of patients with malignant and benign thyroid diseases. J Mol Endocrinol, 29: 287–295, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  75. Span, P. N., Sleegers, M. J., van den Broek, W. J., Ross, H. A., Nieuwlaat, W. A., Hermus, A. R., and Sweep, C. G. Quantitative detection of peripheral thyroglobulin mRNA has limited clinical value in the follow-up of thyroid cancer patients. Ann Clin Biochem, 40: 94–99, 2003.

    CrossRef  CAS  PubMed  Google Scholar 

  76. Gupta, M., Taguba, L., Arciaga, R., Siperstein, A., Faiman, C., Mehta, A., and Sethu, S. Detection of Circulating Thyroid Cancer Cells by Reverse Transcription-PCR for Thyroid-stimulating Hormone Receptor and Thyroglobulin: The Importance of Primer Selection. Clin Chem, 48: 1862–1865, 2002.

    Google Scholar 

  77. Savagner, F., Rodien, P., Reynier, P., Rohmer, V., Bigorgne, J. C., and Malthiery, Y. Analysis of Tg transcripts by real-time RT-PCR in the blood of thyroid cancer patients. J Clin Endocrinol Metab, 87: 635–639, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  78. Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 29: 23–39, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  79. Lossos, I. S., Czerwinski, D. K., Wechser, M. A., and Levy, R. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukemia, 17: 789–795, 2003.

    CAS  PubMed  Google Scholar 

  80. Tricarico, C., Pinzani, P., Bianchi, S., Paglierani, M., Distante, V., Pazzagli, M., Bustin, S. A., and Orlando, C. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem, 309: 293–300, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  81. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3: RESEARCH0034, 2002.

    Google Scholar 

  82. Wingo, S. T., Ringel, M. D., Anderson, J. S., Patel, A. D., Lukes, Y. D., Djuh, Y. Y., Solomon, B., Nicholson, D., Balducci-Silano, P. L., Levine, M. A., Francis, G. L., and Tuttle, R. M. Quantitative reverse transcription-PCR measurement of thyroglobulin mRNA in peripheral blood of healthy subjects. Clin Chem, 45: 785–789, 1999.

    CAS  PubMed  Google Scholar 

  83. Ringel, M. D., Balducci-Silano, P. L., Anderson, J. S., Spencer, C. A., Silverman, J., Sparling, Y. H., Francis, G. L., Burman, K. D., Wartofsky, L., Ladenson, P. W., Levine, M. A., and Tuttle, R. M. Quantitative reverse transcription-polymerase chain reaction of circulating thyroglobulin messenger ribonucleic acid for monitoring patients with thyroid carcinoma. J Clin Endocrinol Metab, 84: 4037–4042, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  84. Takano, T., Miyauchi, A., Yoshida, H., Hasegawa, Y., Kuma, K., and Amino, N. Quantitative measurement of thyroglobulin mRNA in peripheral blood of patients after total thyroidectomy. Br J Cancer, 85: 102–106, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  85. Eszlinger, M., Neumann, S., Otto, L., and Paschke, R. Thyroglobulin mRNA quantification in the peripheral blood is not a reliable marker for the follow-up of patients with differentiated thyroid cancer. Eur J Endocrinol, 147: 575–582, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  86. Roddiger, S. J., Renneberg, H., Martin, T., Tunn, U. W., Zamboglou, N., and Kurek, R. Human kallikrein 2 (hK2) mRNA in peripheral blood of patients with thyroid cancer: a novel molecular marker? J Cancer Res Clin Oncol, 129: 29–34, 2003.

    CAS  PubMed  Google Scholar 

  87. Fenton, C., Anderson, J. S., Patel, A. D., Lukes, Y., Solomon, B., Tuttle, R. M., Ringel, M. D., and Francis, G. L. Thyroglobulin messenger ribonucleic acid levels in the peripheral blood of children with benign and malignant thyroid disease. Pediatr Res, 49: 429–434, 2001.

    CAS  PubMed  Google Scholar 

  88. Haber, R. S. The diagnosis of recurrent thyroid cancer-a new approach. J Clin Endocrinol Metab, 83: 4189–4190, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Ringel, M.D. (2005). Diagnostic Molecular Markers in Thyroid Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics