Skip to main content

The Molecular Pathways Induced by Radiation and Leading to Thyroid Carcinogenesis

  • Chapter

Part of the Cancer Treatment and Research book series (CTAR,volume 122)

Keywords

  • Thyroid Cancer
  • Thyroid Carcinoma
  • Papillary Thyroid Carcinoma
  • Papillary Carcinoma
  • Thyroid Tumor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duffy, B. J., Jr. and Fitzgerald, P. J. Cancer of the thyroid in children: a report of 28 cases. J Clin Endocrinol Metab, 31: 1296–1308, 1950.

    Google Scholar 

  2. Winship, T. and Rosvoll, R. V Cancer of the thyroid in children. Proc Natl Cancer Conf, 6: 677–681, 1970.

    CAS  PubMed  Google Scholar 

  3. Mehta, M. P., Goetowski, P. G., and Kinsella, T. J. Radiation induced thyroid neoplasms 1920 to 1987: a vanishing problem? Int J Radial Oncol Biol Phys, 16: 1471–1475, 1989.

    CAS  Google Scholar 

  4. Acharya, S., Sarafoglou, K., LaQuaglia, M., Lindsley, S., Gerald, W., Wollner, N., Tan, C., and Sklar, C. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer, 97: 2397–2403, 2003.

    CrossRef  PubMed  Google Scholar 

  5. Thompson, D. E., Mabuchi, K., Ron, E., Soda, M., Tokunaga, M., Ochikubo, S., Sugimoto, S., Ikeda, T., Terasaki, M., Izumi, S., and et al. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res, 137: S17–67, 1994.

    CAS  PubMed  Google Scholar 

  6. Cronkite, E. P., Bond, V. P., and Conard, R. A. Medical effects of exposure of human beings to fallout radiation from a thermonuclear explosion. Stem Cells, 13 Suppl 1: 49–57, 1995.

    PubMed  Google Scholar 

  7. Kerber, R. A., Till, J. E., Simon, S. L., Lyon, J. L., Thomas, D. C., Preston-Martin, S., Rallison, M. L., Lloyd, R. D., and Stevens, W. A cohort study of thyroid disease in relation to fallout from nuclear weapons testing. Jama, 270: 2076–2082, 1993.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Gilbert, E. S., Tarone, R., Bouville, A., and Ron, E. Thyroid cancer rates and 131I doses from Nevada atmospheric nuclear bomb tests. J Natl Cancer Inst, 90: 1654–1660, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Kazakov, V. S., Demidchik, E. P., and Astakhova, L. N. Thyroid cancer after Chernobyl. Nature, 359: 21, 1992.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Stsjazhko, V. A., Tsyb, A. F., Tronko, N. D., Souchkevitch, G., and Baverstock, K. F. Childhood thyroid cancer since accident at Chernobyl. Bmj, 310: 801, 1995.

    CAS  PubMed  Google Scholar 

  11. Takahashi, M., Ritz, J., and Cooper, G. M. Activation of a novel human transforming gene, ret, by DNA re-arrangement. Cell, 42: 581–588, 1985.

    CAS  PubMed  Google Scholar 

  12. Takahashi, M. Structure and expression of the ret transforming gene. IARC Sci Publ 189–197, 1988.

    Google Scholar 

  13. Airaksinen, M. S., Titievsky, A., and Saarma, M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci, 13: 313–325, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Grieco, M., Santoro, M., Berlingieri, M. T., Melillo, R. M., Donghi, R., Bongarzone, I., Pierotti, M. A., Delia Porta, G., Fusco, A., and Vecchio, G. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell, 60: 557–563, 1990.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Santoro, M., Dathan, N. A., Berlingieri, M. T., Bongarzone, I., Paulin, C., Grieco, M., Pierotti, M. A., Vecchio, G., and Fusco, A. Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene, 9: 509–516, 1994.

    CAS  PubMed  Google Scholar 

  16. Bongarzone, I., Butti, M. G., Coronelli, S., Borrello, M. G., Santoro, M., Mondellini, P., Pilotti, S., Fusco, A., Delia Porta, G., and Pierotti, M. A. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res, 54: 2979–2985, 1994.

    CAS  PubMed  Google Scholar 

  17. Pierotti, M. A., Santoro, M., Jenkins, R. B., Sozzi, G., Bongarzone, I., Grieco, M., Monzini, N., Miozzo, M., Herrmann, M. A., Fusco, A., and et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci U S A, 89: 1616–1620, 1992.

    CAS  PubMed  Google Scholar 

  18. Minoletti, F., Butti, M. G., Coronelli, S., Miozzo, M., Sozzi, G., Pilotti, S., Tunnacliffe, A., Pierotti, M. A., and Bongarzone, I. The two genes generating RET/PTC3 are localized in chromosomal band 10q11.2. Genes Chromosomes Cancer, 11: 51–57, 1994.

    CAS  PubMed  Google Scholar 

  19. Bongarzone, I., Monzini, N., Borrello, M. G., Carcano, C., Ferraresi, G., Arighi, E., Mondellini, P., Delia Porta, G., and Pierotti, M. A. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A.Mol Cell Biol, 13:358–366, 1993.

    CAS  Google Scholar 

  20. Klugbauer, S., Demidchik, E. P., Lengfelder, E., and Rabes, H. M. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res, 58: 198–203, 1998.

    CAS  PubMed  Google Scholar 

  21. Klugbauer, S. and Rabes, H. M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene, 18: 4388–4393, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Klugbauer, S., Jauch, A., Lengfelder, E., Demidchik, E., and Rabes, H. M. A novel type of RET rearrangement (PTC8) in childhood papillary thyroid carcinomas and characterization of the involved gene (RFG8). Cancer Res, 60: 7028–7032, 2000.

    CAS  PubMed  Google Scholar 

  23. Salassidis, K., Bruch, J., Zitzelsberger, H., Lengfelder, E., Kellerer, A. M., and Bauchinger, M. Translocation t(10;14)(q11.2:q22.1) fusing the kinetin to the RET gene creates a novel rearranged form (PTC8) of the RET proto-oncogene in radiation-induced childhood papillary thyroid carcinoma. Cancer Res, 60: 2786–2789, 2000.

    CAS  PubMed  Google Scholar 

  24. Corvi, R., Berger, N., Balczon, R., and Romeo, G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene, 19: 4236–4242, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Saenko, V., Rogounovitch, T., Shimizu-Yoshida, Y., Abrosimov, A., Lushnikov, E., Roumiantsev, P., Matsumoto, N., Nakashima, M., Meirmanov, S., Ohtsuru, A., Namba, H., Tsyb, A., and Yamashita, S. Novel tumorigenic rearrangement, Delta rfp/ret, in a papillary thyroid carcinoma from externally irradiated patient. Mutat Res, 527: 81–90, 2003.

    CAS  PubMed  Google Scholar 

  26. Tong, Q., Xing, S., and Jhiang, S. M. Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem, 272: 9043–9047, 1997.

    CAS  PubMed  Google Scholar 

  27. Jhiang, S. M. The RET proto-oncogene in human cancers. Oncogene, 19: 5590–5597, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Salvatore, D., Barone, M. V., Salvatore, G., Melillo, R. M., Chiappetta, G., Mineo, A., Fenzi, G., Vecchio, G., Fusco, A., and Santoro, M. Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab, 85: 3898–3907, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Pierotti, M. A., Bongarzone, I., Borello, M. G., Greco, A., Pilotti, S., and Sozzi, G. Cytogenetics and moleculargenetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer, 16: 1–14, 1996.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Monaco, C., Visconti, R., Barone, M. V., Pierantoni, G. M., Berlingieri, M. T., De Lorenzo, C., Mineo, A., Vecchio, G., Fusco, A., and Santoro, M. The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane. Oncogene, 20: 599–608, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Nikiforov, Y. E. RET/PTC Rearrangement in Thyroid Tumors. Endocr Pathol, 13: 3–16, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Tallini, G., Santoro, M., Helie, M., Carlomagno, F., Salvatore, G., Chiappetta, G., Carcangiu, M. L., and Fusco, A. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res, 4: 287–294, 1998.

    CAS  PubMed  Google Scholar 

  33. Jhiang, S. M., Caruso, D. R., Gilmore, E., Ishizaka, Y., Tahira, T., Nagao, M., Chiu, I. M., and Mazzaferri, E. L. Detection of the PTC/retTPC oncogene in human thyroid cancers. Oncogene, 7: 1331–1337, 1992.

    CAS  PubMed  Google Scholar 

  34. Santoro, M., Carlomagno, F., Hay, I. D., Herrmann, M. A., Grieco, M., Melillo, R., Pierotti, M. A., Bongarzone, I., Della Porta, G., Berger, N., and et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest, 89: 1517–1522, 1992.

    CAS  PubMed  Google Scholar 

  35. Lam, A. K., Montone, K. T., Nolan, K. A., and Livolsi, V. A. Ret oncogene activation in papillary thyroid carcinoma: prevalence and implication on the histological parameters. Hum Pathol, 29: 565–568, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  36. Nikiforova, M. N., Caudill, C. M., Biddinger, P., and Nikiforov, Y. E. Prevalence of RET/PTC Rearrangements in Hashimoto’s Thyroiditis and Papillary Thyroid Carcinomas. Int J Surg Pathol, 10: 15–22, 2002.

    CAS  PubMed  Google Scholar 

  37. Sugg, S. L., Ezzat, S., Zheng, L., Freeman, J. L., Rosen, I. B., and Asa, S. L. Oncogene profile of papillary thyroid carcinoma. Surgery, 125: 46–52, 1999.

    CAS  PubMed  Google Scholar 

  38. Bongarzone, I., Fugazzola, L., Vigneri, P., Mariani, L., Mondellini, P., Pacini, F., Basolo, F., Pinchera, A., Pilotti, S., and Pierotti, M. A. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab, 81: 2006–2009, 1996.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Bongarzone, I., Vigneri, P., Mariani, L., Collini, P., Pilotti, S., and Pierotti, M. A. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinico-pathological features. Clin Cancer Res, 4: 223–228, 1998.

    CAS  PubMed  Google Scholar 

  40. Zou, M., Shi, Y., and Farid, N. R. Low rate of ret proto-oncogene activation (PTC/retTPC) in papillary thyroid carcinomas from Saudi Arabia. Cancer, 73: 176–180, 1994.

    CAS  PubMed  Google Scholar 

  41. Chua, E. L., Wu, W. M., Tran, K. T., McCarthy, S. W., Lauer, C. S., Dubourdieu, D., Packham, N., O’Brien, C. J., Turtle, J. R., and Dong, Q. Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab, 85: 2733–2739, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Nikiforov, Y E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H., and Fagin, J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res, 57: 1690–1694, 1997.

    CAS  PubMed  Google Scholar 

  43. Fenton, C. L., Lukes, Y., Nicholson, D., Dinauer, C. A., Francis, G. L., and Tuttle, R. M. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab, 85: 1170–1175, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  44. Soares, P., Fonseca, E., Wynford-Thomas, D., and Sobrinho-Simoes, M. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol, 185: 71–78, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  45. Fugazzola, L., Pilotti, S., Pinchera, A., Vorontsova, T. V., Mondellini, P., Bongarzone, I., Greco, A., Astakhova, L., Butti, M. G., Demidchik, E. P., and et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res, 55: 5617–5620, 1995.

    CAS  PubMed  Google Scholar 

  46. Klugbauer, S., Lengfelder, E., Demidchik, E. P., and Rabes, H. M. High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene, 11: 2459–2467, 1995.

    CAS  PubMed  Google Scholar 

  47. Smida, J., Salassidis, K., Hieber, L., Zitzelsberger, H., Kellerer, A. M., Demidchik, E. P., Negele, T., Spelsberg, F., Lengfelder, E., Werner, M., and Bauchinger, M. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int J Cancer, 80: 32–38, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Rabes, H. M., Demidchik, E. P., Sidorow, J. D., Lengfelder, E., Beimfohr, C., Hoelzel, D., and Klugbauer, S. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res, 6: 1093–1103, 2000.

    CAS  PubMed  Google Scholar 

  49. Bounacer, A., Wicker, R., Caillou, B., Cailleux, A. F., Sarasin, A., Schlumberger, M., and Suarez, H. G. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene, 15: 1263–1273, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Elisei, R., Romei, C., Vorontsova, T., Cosci, B., Veremeychik, V., Kuchinskaya, E., Basolo, F., Demidchik, E. P., Miccoli, P., Pinchera, A., and Pacini, F. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinel Metab, 86: 3211–3216, 2001.

    CAS  Google Scholar 

  51. Collins, B. J., Chiappetta, G., Schneider, A. B., Santoro, M., Pentmialli, F., Fogelfeld, L., Gierlowski, T., Shore-Freedman, E., Jaffe, G., and Fusco, A. RET expression in papillary thyroid cancer from patients irradiated in childhood for benign conditions. J Clin Endocrinol Metab, 87: 3941–3946, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Powell, D. J., Jr., Russell, J., Nibu, K., Li, G., Rhee, E., Liao, M., Goldstein, M., Keane, W. M., Santoro, M., Fusco, A., and Rothstein, J. L. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res, 58: 5523–5528, 1998.

    CAS  PubMed  Google Scholar 

  53. Jhiang, S. M., Sagartz, J. E., Tong, Q., Parker-Thornburg, J., Capen, C. C., Cho, J. Y., Xing, S., and Ledent, C. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology, 137: 375–378, 1996.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Basolo, F., Giannini, R., Monaco, C., Melillo, R. M., Carlomagno, F., Pancrazi, M., Salvatore, G., Chiappetta, G., Pacini, F., Elisei, R., Miccoli, P., Pinchera, A., Fusco, A., and Santoro, M. Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am J Pathol, 160: 247–254, 2002.

    CAS  PubMed  Google Scholar 

  55. Ito, T., Seyama, T., Iwamoto, K. S., Hayashi, T., Mizuno, T., Tsuyama, N., Dohi, K., Nakamura, N., and Akiyama, M. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res, 53: 2940–2943, 1993.

    CAS  PubMed  Google Scholar 

  56. Mizuno, T., Kyoizumi, S., Suzuki, T., Iwamoto, K. S., and Seyama, T. Continued expression of a tissue specific activated oncogene in the early steps of radiation-induced human thyroid carcinogenesis Oncogene, 15: 1455–1460, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Mizuno, T., Iwamoto, K. S., Kyoizumi, S., Nagamura, H., Shinohara, T., Koyama, K., Seyama, T., and Hamatani, K. Preferential induction of RET/PTC1 rearrangement by X-ray irradiation. Oncogene, 19: 438–443, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Smanik, P. A., Furminger, T. L., Mazzaferri, E. L., and Jhiang, S. M. Breakpoint characterization of the ret/PTC oncogene in human papillary thyroid carcinoma. Hum Mol Genet, 4: 2313–2318, 1995.

    CAS  PubMed  Google Scholar 

  59. Bongarzone, I., Butti, M. G., Fugazzola, L., Pacini, F., Pinchera, A., Vorontsova, T. V., Demidchik, E. P., and Pierotti, M. A. Comparison of the breakpoint regions of ELE1 and RET genes involved in the generation of RET/PTC3 oncogene in sporadic and in radiation-associated papillary thyroid carcinomas. Genomics, 42: 252–259, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Nikiforov, Y. E., Koshoffer, A., Nikiforova, M., Stringer, J., and Fagin, J. A. Chromosomal breakpoint positions suggest a direct role for radiation in inducing illegitimate recombination between the ELE1 and RET genes in radiation-induced thyroid carcinomas. Oncogene, 18: 6330–6334, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Klugbauer, S., Pfeiffer, P., Gassenhuber, H., Beimfohr, C., and Rabes, H. M. RET rearrangements in radiation-induced papillary thyroid carcinomas: high prevalence of topoisomerase I sites at breakpoints and microhomology-mediated end joining in ELE1 and RET chimeric genes. Genomics, 73: 149–160, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Yokota, H., van den Engh, G., Hearst, J. E., Sachs, R. K., and Trask, B. J. Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol, 130: 1239–1249, 1995.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Nikiforova, M. N., Stringer, J. R., Blough, R., Medvedovic, M., Fagin, J. A., and Nikiforov, Y. E. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science, 290: 138–141, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  64. van den Engh, G., Sachs, R., and Trask, B. J. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science, 257: 1410–1412, 1992.

    PubMed  Google Scholar 

  65. Kroll, T. G., Sarraf, P., Pecciarini, L., Chen, C. J., Mueller, E., Spiegelman, B. M., and Fletcher, J. A. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science, 289: 1357–1360, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  66. French, C. A., Alexander, E. K., Cibas, E. S., Nose, V., Laguette, J., Faquin, W., Garber, J., Moore, F., Jr., Fletcher, J. A., Larsen, P. R., and Kroll, T. G. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol, 162: 1053–1060, 2003.

    CAS  PubMed  Google Scholar 

  67. Cheung, L., Messina, M., Gill, A., Clarkson, A., Learoyd, D., Delbridge, L., Wentworth, J., Philips, J., Clifton-Bligh, R., and Robinson, B. G. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab, 88: 354–357, 2003.

    CrossRef  CAS  PubMed  Google Scholar 

  68. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G., and Nikiforov, Y. E. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol, 26: 1016–1023, 2002.

    CrossRef  PubMed  Google Scholar 

  69. Shore, R. E. Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res, 131: 98–111, 1992.

    CAS  PubMed  Google Scholar 

  70. Wright, P. A., Williams, E. D., Lemoine, N. R., and Wynford-Thomas, D. Radiation-associated and’ spontaneous’ human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene, 6: 471–473, 1991.

    CAS  PubMed  Google Scholar 

  71. Challeton, C., Bounacer, A., Du Villard, J. A., Caillou, B., De Vathaire, F, Monier, R., Schlumberger, M., and Suarez, H. G. Pattern of ras and gsp oncogene mutations in radiation-associated human thyroid tumors. Oncogene, 11: 601–603, 1995.

    CAS  PubMed  Google Scholar 

  72. Nikiforov, Y. E., Nikiforova, M. N., Gnepp, D. R., and Fagin, J. A. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene, 13: 687–693, 1996.

    CAS  PubMed  Google Scholar 

  73. Santoro, M., Thomas, G. A., Vecchio, G., Williams, G. H., Fusco, A., Chiappetta, G., Pozcharskaya, V., Bogdanova, T. I., Demidchik, E. P., Cherstvoy, E. D., Voscoboinik, L., Tronko, N. D., Carss, A., Bunnell, H., Tonnachera, M., Parma, J., Dumont, J. E., Keller, G., Hofler, H., and Williams, E. D. Gene rearrangement and Chernobyl related thyroid cancers. Br J Cancer, 82: 315–322, 2000.

    CAS  PubMed  Google Scholar 

  74. Suchy, B., Waldmann, V., Klugbauer, S., and Rabes, H. M. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br J Cancer, 77: 952–955, 1998.

    CAS  PubMed  Google Scholar 

  75. Fogelfeld, L., Bauer, T. K., Schneider, A. B., Swartz, J. E., and Zitman, R. p53 gene mutations in radiation-induced thyroid cancer. J Clin Endocrinol Metab, 81: 3039–3044, 1996.

    CrossRef  CAS  PubMed  Google Scholar 

  76. Hillebrandt, S., Streffer, C., Reiners, C., and Demidchik, E. Mutations in the p53 tumour suppressor gene in thyroid tumours of children from areas contaminated by the Chernobyl accident. Int J Radiat Biol, 69: 39–45, 1996.

    CrossRef  CAS  PubMed  Google Scholar 

  77. Smida, J., Zitzelsberger, H., Kellerer, A. M., Lehmann, L., Minkus, G., Negele, T., Spelsberg, F., Hieber, L., Demidchik, E. P., Lengfelder, E., and Bauchinger, M. p53 mutations in childhood thyroid tumours from Belarus and in thyroid tumours without radiation history. Int J Cancer, 73: 802–807, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  78. Waldmann, V. and Rabes, H. M. Absence of G(s) alpha gene mutations in childhood thyroid tumors after Chernobyl in contrast to sporadic adult thyroid neoplasia. Cancer Res, 57: 2358–2361, 1997.

    CAS  PubMed  Google Scholar 

  79. Rogounovitch, T. I., Saenko, V. A., Shimizu-Yoshida, Y., Abrosimov, A. Y., Lushnikov, E. F., Roumi-antsev, P. O., Ohtsuru, A., Namba, H., Tsyb, A. F., and Yamashita, S. Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res, 62: 7031–7041, 2002.

    CAS  PubMed  Google Scholar 

  80. Kimura, E. T., Nikiforova, M. N., Zhu, Z., Knauf, J. A., Nikiforov, Y. E., and Fagin, J. A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res, 63: 1454–1457, 2003.

    CAS  PubMed  Google Scholar 

  81. Dubrova, Y. E., Nesterov, V. N., Krouchinsky, N. G., Ostapenko, V A., Neumann, R., Neil, D. L., and Jeffreys, A. J. Human minisatellite mutation rate after the Chernobyl accident. Nature, 380: 683–686, 1996.

    CrossRef  CAS  PubMed  Google Scholar 

  82. Dubrova, Y. E., Grant, G., Chumak, A. A., Stezhka, V. A., and Karakasian, A. N. Elevated minisatellite mutation rate in the post-chernobyl families from ukraine. Am J Hum Genet, 71: 801–809, 2002.

    CrossRef  PubMed  Google Scholar 

  83. Nikiforov, Y. E., Nikiforova, M., and Fagin, J. A. Prevalence of minisatellite and microsatellite instability in radiation-induced post-Chernobyl pediatric thyroid carcinomas. Oncogene, 17: 1983–1988, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  84. Richter, H. E., Lohrer, H. D., Hieber, L., Kellerer, A. M., Lengfelder, E., and Bauchinger, M. Microsatellite instability and loss of heterozygosity in radiation-associated thyroid carcinomas of Belarussian children and adults. Carcinogenesis, 20: 2247–2252, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Nikiforov, Y.E. (2005). The Molecular Pathways Induced by Radiation and Leading to Thyroid Carcinogenesis. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics