Skip to main content

Matrix Metalloproteinases in Thyroid Cancer

  • Chapter

Part of the Cancer Treatment and Research book series (CTAR,volume 122)

Conclusions

As compared with tumors from other organs such as lung, colon, and breast, a limited number of studies have been carried out so far on the involvement of MMPs and TIMPs in thyroid tumorigenesis. Based upon the available data, it is clear that MMPs, especially MMP-2 and MMP-9, and TIMP-1 are involved in thyroid tumor invasion and metastasis. Although TIMP-1 can reduce the invasive potential of thyroid cancer cells in vitro, therapeutic intervention in vivo has not been attempted yet in animal models to inhibit thyroid tumor growth, invasion, and metastasis, using either synthetic MMP inhibitors or TIMPs gene therapy. Clearly, more studies are needed to fully appreciate the important roles of MMPs and TIMPs in thyroid cancer.

Keywords

  • Thyroid Cancer
  • Thyroid Carcinoma
  • Papillary Thyroid Carcinoma
  • Tissue Inhibitor
  • Cancer Gene Therapy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan, D., and Weinberg, R.A. The hallmarks of cancer. Cell, 100:57–70, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Farid, N.R., Shi, Y., and Zou, M.J. Molecular basis of thyroid cancer. Endocrine Review 15:202–232, 1994.

    CAS  Google Scholar 

  3. Kohn, E.C., and Liotta, L.A. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res., 55:1856–1862, 1995.

    CAS  PubMed  Google Scholar 

  4. DeClerck, Y.A. Interactions between tumor cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. European J. Cancer 36:1258–1268, 2000.

    CAS  Google Scholar 

  5. Nagase, H., and Woessner, J.F. Matrix metalloproteinases. J. Biol. Chem., 274:21491–21494, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Bode, W., Fernandez-Catalan, C., Grams, F., Gomis-Ruth, F.X., Nagase, H., Tschesche, H., and Maskos, K. Insights into MMP-TIMP interactions. Ann. NY Acad. Sci., 878:73–91, 1999.

    CAS  PubMed  Google Scholar 

  7. Egeblad, M., and Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2:163–176, 2002.

    CrossRef  Google Scholar 

  8. Manes, S., Mira, E., Barbacid, M.M., Cipres, A., Fernandez-Resa, P., Buesa, J.M., Merida, I., Aracil, M., Marquez, G., and Martinez, A. C. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem., 272:25706–25712, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Cornelius, L.A., Nehring, L.C., Harding, E., Bolanowski, M., Welgus, H.G., Kobayashi, D.K., Pierce, R.A., and Shapiro, S.D. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol., 161:6845–6852, 1998.

    CAS  PubMed  Google Scholar 

  10. Yu, Q., and Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev., 14:163–176, 2000.

    PubMed  Google Scholar 

  11. Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H., and Seiki, M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol., 153:893–904, 2001

    CrossRef  CAS  PubMed  Google Scholar 

  12. Fini, M.E., Cook, J.R., Mohan, R., and Brinckerhoft, C.E. in Matrix Metalloproteinases (Parks, W.C. and Mecham, R.P., eds) pp. 299–356, 1998. Academic Press, San Diego.

    Google Scholar 

  13. Overall, C.M., and Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews Cancer, 2:657–672, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Ye, S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biology, 19: 623–629, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Ye, S., Dhillon, S., Turner, S.J., Bateman, A.C., Theaker, J.M., Pickering, R.M., Day, I., and Howell, W.M. Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase 1 gene polymorphism. Cancer Res., 61: 1296–1298, 2001.

    CAS  PubMed  Google Scholar 

  16. Nagase, H. Activational mechanisms of matrix metalloproteinases. Biol. Chem., 378:151–160, 1997.

    CAS  PubMed  Google Scholar 

  17. Strongin, A.Y., Collier, I., Bannikov, G., Marmer, B.L., Grant, G.A., Goldberg, G.I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem., 270:5331–5338, 1995.

    CAS  PubMed  Google Scholar 

  18. Deryugina, E.I., Ratnikov, B., Monosov, E., Postnova, T.I., DiScipio, R., Smith, J.W., Strongin, A.Y MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res., 263:209–223, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Morrison, C.J., Butler, G.S., Bigg, H.F., Roberts, C.R., Soloway, P.D., Overall, C.M. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J. Biol. Chem., 276:47402–47410, 2001.

    CAS  PubMed  Google Scholar 

  20. Sternlicht, M.D. and Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17:463–516, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  21. Sottrup-Jensen, L., and Birkedal-Hansen, H. Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J. Biol. Chem., 264:393–401, 1989.

    CAS  PubMed  Google Scholar 

  22. Yang, Z., Strickland, D.K., and Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J. Biol. Chem., 276:8403–8408, 2001.

    CAS  PubMed  Google Scholar 

  23. Rodriguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., Hynes, R.O., Lawler, J., and Iruela-Arispe, M.L. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA, 98:12485–12490, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Bein, K., and Simons, M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem., 275:32167–32173, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Taraboletti, G., Morbidelli,. L, Donnini, S., Parenti, A., Granger, H.J., Giavazzi, R., and Ziche, M. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J., 14:1674–1676, 2000.

    CAS  PubMed  Google Scholar 

  26. Greene, J., Wang, M., Liu, Y.E., Raymond, L.A., Rosen, C., Shi, Y.E. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem., 271:30375–80, 1996.

    CAS  PubMed  Google Scholar 

  27. Gomis-Ruth, F.X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G.P., Bartunik, H., Bode, W. Mechanism of inhibition of the human matrix metalloproteinase stromelysm-1 by TIMP-1. Nature, 389:77–81, 1997.

    CAS  PubMed  Google Scholar 

  28. Edwards, D. R. in Matrix Metalloproteinase Inhibitors in Cancer Therapy (eds Clendeninn, N. J. & Appelt, K.) 67–84 (Humana Press, Totowa, New Jersey, 2001).

    Google Scholar 

  29. Wang, Z., Juttermann, R., and Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem., 275, 26411–26415, 2000.

    CAS  PubMed  Google Scholar 

  30. Baker, A.H., George, S.J., Zaltsman, A.B., Murphy, G., and Newby, A.G. Inhibition of invasionand induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British J. Cancer. 79:1347–11355, 1999.

    CAS  Google Scholar 

  31. Li, G., and Fridman, R., and Kim, H.R. Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res., 59:6267–6275, 1999.

    CAS  PubMed  Google Scholar 

  32. Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., Stetler-Stevenson, W.G. and Albini, A. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apotosis. Int. J. Cancer, 75:246–253, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Polette, M., Gilbert, N., Stas, I., Nawrocki, B., Noel, A., Remacle, A., Stetler-Stevenson, W.G., Birembaut, P., and Foidart, M. Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch., 424:641–645, 1994.

    CAS  PubMed  Google Scholar 

  34. Huang, S., van Arsdall, M., Tedjarati, S., McCarty, M., Wu, W., Langley, R., and Fidler, I.J. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J. Natl. Cancer Inst., 94:1134–1142, 2002.

    CAS  PubMed  Google Scholar 

  35. Guo, H., Zucker, S., Gordon, M.K., Toole, B.P., and Biswas, C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J. Biol. Chem., 272:24–27, 1997.

    CAS  PubMed  Google Scholar 

  36. Skobe, M., and Fusenig N.E. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl. Acad. Sci. USA, 95:1050–1055, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  37. Demeure, M.J., Damsky, C.H., Elfman, F., Goretzki, P.E., Wong, M.G., and Clark, O.H. Invasion by cultured human follicular thyroid cancer correlates with increased beta 1 integrins and production of proteases. World J. Surg., 16:770–776, 1992.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Smit, J.W.A., van der Pluijm, G., Romijn, H.A., Lowik, C.W.G.M, Morreau, H., and Gosling, B.M. Degradation of extracellular matrix by metastatic follicular thyroid carcinoma cell lines: role of te plasmin activation system. Thyroid, 9:913–919, 1999.

    CAS  PubMed  Google Scholar 

  39. Andreasen, P.A., Kjoller, L., Christensen, L., and Duffy, M.J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer, 72:1–22, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Maeta, H., Ohgi, S., and Terada, T. Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas. Virchows Archiv., 438:121–128, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Nakamura, H., Ueno, H., Yamashita, K., Shimada, T., Yamamoto, E., Noguchi, M., Fujimoto, N., Sato, H., Seiki, M., and Okada, Y. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res., 59:467–473, 1999.

    CAS  PubMed  Google Scholar 

  42. Zedenius, J., Stahle-Backdahl, M., Enberg, U., Grimelius, L., Larsson, C., Wallin, G., and Backdahl, M. Stromal fibroblasts adjacent to invasive thyroid tumors: expression of gelatinase A but not stromelysin 3 mRNA. World J. Surg., 20:101–106, 1996.

    CAS  PubMed  Google Scholar 

  43. Patel, A., Straight, A.M., Mann, H., Duffy, E., Fenton, C., Dinauer, C., Tuttle, R.M., and Francis, G.L. Matrix metalloproteinase (MMP) expression by differentiated thyroid carcinoma of children and adolescents. J. Endocrinol. Investigation, 25:403–408, 2002.

    CAS  Google Scholar 

  44. Kameyama, K. Expression of MMP-1 in the capsule of thyroid cancer-relationship with invasiveness. Pathol. Res. Pract., 192:20–26, 1996.

    CAS  PubMed  Google Scholar 

  45. Wasenius, V.-M., Hemmer, S., Kettunen, E., Knuutila, S., Franssila, K., and Joensuu, H. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin. Cancer Res., 9:68–75, 2003.

    CAS  PubMed  Google Scholar 

  46. Shi, Y., Parhar, R.S., Zou, M., Hammami, M.M., Akhtar, M., Lum, Z.P., Farid, N.R., Al-Sedairy, S.T., Paterson, M.C. Tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA is elevated in advanced stages of thyroid carcinoma. British J. Cancer. 79:1234–1239, 1999.

    CAS  Google Scholar 

  47. Aust, G., Hofmann, A., Laue, S., Rost, A., Kohler, T., and Scherbaum, W.A. Human thyroid carcinoma cell lines and normal thyrocytes: expression and regulation of matrix metalloproteinase-1 and tissue matrix metalloproteinase inhibitor-1 messenger-RNA and protein. Thyroid, 7:713–724, 1997.

    CAS  PubMed  Google Scholar 

  48. Hofmann, A., Laue, S., Rost, A.-K., Kohler, T., and Scherbaum, W.A., and Aust, G. mRNA levels of membrane-type 1 matrix metalloproteinase (MT1-MMP), MMP-2, and MMP-9 and of their inhibitors TIMP-2 and TIMP-3 in normal thyrocytes and thyroid carcinoma cell lines. Thyroid, 8:203–214, 1998.

    CAS  PubMed  Google Scholar 

  49. Korem, S., Resnick, M.B., and Kraiem, Z. Similar and divergent patterns in the regulation of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of MMP-1 gene expression in benign and malignant human thyroid cells. J. Clin. Endocrinol. Metab., 84:3322–3327, 1999.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Heinrich, R., and Kraiem, Z. The protein kinase A pathway inhibits c-jun and c-fos protooncogene expression induced by the protein kinase C and tyrosine kinase pathways in cultured human thyroid follicles. J. Clin. Endocrinol. Metab., 82:1839–1844, 1997.

    CrossRef  CAS  PubMed  Google Scholar 

  51. Damjanovski, S., Puzianowska-kuznicka, M., Ishuzuya-Oka, A., and Shi, Y-B. Differential regulation of three thyroid hormone-responsive matrix metalloproteinase genes implicates distinct functions during frog embryogenesis. FASEB J., 14:503–510, 2000.

    CAS  PubMed  Google Scholar 

  52. Gohji, K., Fujimoto, N., Hara, I., Fujii, A., Gotoh, A., Okada, H., Arakawa, S., Kitazawa, S., Miyake, H., Kamidono, S., and Nakajima, M. Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. Int. J. Cancer. 79:96–101, 1998.

    CrossRef  CAS  PubMed  Google Scholar 

  53. Pellegrini, P., Contasta, I., Berghella, A.M., Gargano, E., Mammarella, C., and Adorno, D. Simultaneous measurement of soluble carcinoembryonic antigen and the tissue inhibitor of metalloproteinase TIMP1 serum levels for use as markers of pre-invasive to invasive colorectal cancer. Cancer Immunology & Immunotherapy. 49:388–94, 2000.

    CAS  Google Scholar 

  54. Laack, E., Kohler, A., Kugler, C., Dierlamm, T., Knuffmann, C., Vohwinkel, G., Niestroy, A., Dahlmann, N., Peters, A., Berger, J., Fiedler, W., and Hossfeld, D.K. Pretreatment serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in non-small-cell lung cancer. Annals of Oncology. 13:1550–7, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Komorowski, J., Pasieka, Z., Jankiewicz-Wika, J., and Stepien, H. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer. Thyroid, 12:655–662, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Zucker, S., Cao, J., and Chen, W.-T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene, 19:6642–6650, 2000.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Coussens, L.M., Fingleton, B., and Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295:2387–2392, 2002.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Brand, K. Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Current Gene Therapy. 2:255–71, 2002.

    CAS  PubMed  Google Scholar 

  59. Baker, A.H. Ahonen, M., and Kahari, V.M. Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy. Advances in Experimental Medicine & Biology. 465:469–83, 2000.

    CAS  Google Scholar 

  60. Shi, Y., Parhar, R.S., Zou, M., Al-Mohanna, F.A., and Paterson, M.C. Gene therapy of melanoma pulmonary metastasis by intramuscular injection of plasmid DNA encoding tissue inhibitor of metalloproteinases-1. Cancer Gene Therapy, 9:126–32, 2002.

    CAS  PubMed  Google Scholar 

  61. Rigg, A.S. and Lemoine, N.R. Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Therapy. 8:869–78, 2001.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Ahonen, M., Ala-Aho, R., Baker, A.H., George, S.J., Grenman, R., Saarialho-Kere, U., and Kahari, V.M. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Molecular Therapy: the Journal of the American Society of Gene Therapy, 5:705–15, 2002.

    CAS  Google Scholar 

  63. Li, H., Lindenmeyer, F., Grenet, C., Opolon, P., Menashi, S., Soria, C., Yeh, P., Perricaudet, M., and Lu, H. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Human Gene Therapy, 12:515–526, 2001.

    CAS  PubMed  Google Scholar 

  64. Jiang, Y., Wang, M., Celiker, M.Y., Liu, Y.E., Sang, Q.X., Goldberg, I.D., and Shi, Y.E. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res., 61:2365–2370, 2001.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Shi, Y., Zou, M. (2005). Matrix Metalloproteinases in Thyroid Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics