Conclusions
As compared with tumors from other organs such as lung, colon, and breast, a limited number of studies have been carried out so far on the involvement of MMPs and TIMPs in thyroid tumorigenesis. Based upon the available data, it is clear that MMPs, especially MMP-2 and MMP-9, and TIMP-1 are involved in thyroid tumor invasion and metastasis. Although TIMP-1 can reduce the invasive potential of thyroid cancer cells in vitro, therapeutic intervention in vivo has not been attempted yet in animal models to inhibit thyroid tumor growth, invasion, and metastasis, using either synthetic MMP inhibitors or TIMPs gene therapy. Clearly, more studies are needed to fully appreciate the important roles of MMPs and TIMPs in thyroid cancer.
Keywords
- Thyroid Cancer
- Thyroid Carcinoma
- Papillary Thyroid Carcinoma
- Tissue Inhibitor
- Cancer Gene Therapy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Hanahan, D., and Weinberg, R.A. The hallmarks of cancer. Cell, 100:57–70, 2000.
Farid, N.R., Shi, Y., and Zou, M.J. Molecular basis of thyroid cancer. Endocrine Review 15:202–232, 1994.
Kohn, E.C., and Liotta, L.A. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res., 55:1856–1862, 1995.
DeClerck, Y.A. Interactions between tumor cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. European J. Cancer 36:1258–1268, 2000.
Nagase, H., and Woessner, J.F. Matrix metalloproteinases. J. Biol. Chem., 274:21491–21494, 1999.
Bode, W., Fernandez-Catalan, C., Grams, F., Gomis-Ruth, F.X., Nagase, H., Tschesche, H., and Maskos, K. Insights into MMP-TIMP interactions. Ann. NY Acad. Sci., 878:73–91, 1999.
Egeblad, M., and Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2:163–176, 2002.
Manes, S., Mira, E., Barbacid, M.M., Cipres, A., Fernandez-Resa, P., Buesa, J.M., Merida, I., Aracil, M., Marquez, G., and Martinez, A. C. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem., 272:25706–25712, 1997.
Cornelius, L.A., Nehring, L.C., Harding, E., Bolanowski, M., Welgus, H.G., Kobayashi, D.K., Pierce, R.A., and Shapiro, S.D. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol., 161:6845–6852, 1998.
Yu, Q., and Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev., 14:163–176, 2000.
Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, H., and Seiki, M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol., 153:893–904, 2001
Fini, M.E., Cook, J.R., Mohan, R., and Brinckerhoft, C.E. in Matrix Metalloproteinases (Parks, W.C. and Mecham, R.P., eds) pp. 299–356, 1998. Academic Press, San Diego.
Overall, C.M., and Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews Cancer, 2:657–672, 2002.
Ye, S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biology, 19: 623–629, 2000.
Ye, S., Dhillon, S., Turner, S.J., Bateman, A.C., Theaker, J.M., Pickering, R.M., Day, I., and Howell, W.M. Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase 1 gene polymorphism. Cancer Res., 61: 1296–1298, 2001.
Nagase, H. Activational mechanisms of matrix metalloproteinases. Biol. Chem., 378:151–160, 1997.
Strongin, A.Y., Collier, I., Bannikov, G., Marmer, B.L., Grant, G.A., Goldberg, G.I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem., 270:5331–5338, 1995.
Deryugina, E.I., Ratnikov, B., Monosov, E., Postnova, T.I., DiScipio, R., Smith, J.W., Strongin, A.Y MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res., 263:209–223, 2001.
Morrison, C.J., Butler, G.S., Bigg, H.F., Roberts, C.R., Soloway, P.D., Overall, C.M. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J. Biol. Chem., 276:47402–47410, 2001.
Sternlicht, M.D. and Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17:463–516, 2001.
Sottrup-Jensen, L., and Birkedal-Hansen, H. Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J. Biol. Chem., 264:393–401, 1989.
Yang, Z., Strickland, D.K., and Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J. Biol. Chem., 276:8403–8408, 2001.
Rodriguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., Hynes, R.O., Lawler, J., and Iruela-Arispe, M.L. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA, 98:12485–12490, 2001.
Bein, K., and Simons, M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem., 275:32167–32173, 2000.
Taraboletti, G., Morbidelli,. L, Donnini, S., Parenti, A., Granger, H.J., Giavazzi, R., and Ziche, M. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J., 14:1674–1676, 2000.
Greene, J., Wang, M., Liu, Y.E., Raymond, L.A., Rosen, C., Shi, Y.E. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem., 271:30375–80, 1996.
Gomis-Ruth, F.X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G.P., Bartunik, H., Bode, W. Mechanism of inhibition of the human matrix metalloproteinase stromelysm-1 by TIMP-1. Nature, 389:77–81, 1997.
Edwards, D. R. in Matrix Metalloproteinase Inhibitors in Cancer Therapy (eds Clendeninn, N. J. & Appelt, K.) 67–84 (Humana Press, Totowa, New Jersey, 2001).
Wang, Z., Juttermann, R., and Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem., 275, 26411–26415, 2000.
Baker, A.H., George, S.J., Zaltsman, A.B., Murphy, G., and Newby, A.G. Inhibition of invasionand induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British J. Cancer. 79:1347–11355, 1999.
Li, G., and Fridman, R., and Kim, H.R. Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res., 59:6267–6275, 1999.
Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., Stetler-Stevenson, W.G. and Albini, A. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apotosis. Int. J. Cancer, 75:246–253, 1998.
Polette, M., Gilbert, N., Stas, I., Nawrocki, B., Noel, A., Remacle, A., Stetler-Stevenson, W.G., Birembaut, P., and Foidart, M. Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch., 424:641–645, 1994.
Huang, S., van Arsdall, M., Tedjarati, S., McCarty, M., Wu, W., Langley, R., and Fidler, I.J. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J. Natl. Cancer Inst., 94:1134–1142, 2002.
Guo, H., Zucker, S., Gordon, M.K., Toole, B.P., and Biswas, C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J. Biol. Chem., 272:24–27, 1997.
Skobe, M., and Fusenig N.E. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl. Acad. Sci. USA, 95:1050–1055, 1998.
Demeure, M.J., Damsky, C.H., Elfman, F., Goretzki, P.E., Wong, M.G., and Clark, O.H. Invasion by cultured human follicular thyroid cancer correlates with increased beta 1 integrins and production of proteases. World J. Surg., 16:770–776, 1992.
Smit, J.W.A., van der Pluijm, G., Romijn, H.A., Lowik, C.W.G.M, Morreau, H., and Gosling, B.M. Degradation of extracellular matrix by metastatic follicular thyroid carcinoma cell lines: role of te plasmin activation system. Thyroid, 9:913–919, 1999.
Andreasen, P.A., Kjoller, L., Christensen, L., and Duffy, M.J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer, 72:1–22, 1997.
Maeta, H., Ohgi, S., and Terada, T. Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas. Virchows Archiv., 438:121–128, 2001.
Nakamura, H., Ueno, H., Yamashita, K., Shimada, T., Yamamoto, E., Noguchi, M., Fujimoto, N., Sato, H., Seiki, M., and Okada, Y. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res., 59:467–473, 1999.
Zedenius, J., Stahle-Backdahl, M., Enberg, U., Grimelius, L., Larsson, C., Wallin, G., and Backdahl, M. Stromal fibroblasts adjacent to invasive thyroid tumors: expression of gelatinase A but not stromelysin 3 mRNA. World J. Surg., 20:101–106, 1996.
Patel, A., Straight, A.M., Mann, H., Duffy, E., Fenton, C., Dinauer, C., Tuttle, R.M., and Francis, G.L. Matrix metalloproteinase (MMP) expression by differentiated thyroid carcinoma of children and adolescents. J. Endocrinol. Investigation, 25:403–408, 2002.
Kameyama, K. Expression of MMP-1 in the capsule of thyroid cancer-relationship with invasiveness. Pathol. Res. Pract., 192:20–26, 1996.
Wasenius, V.-M., Hemmer, S., Kettunen, E., Knuutila, S., Franssila, K., and Joensuu, H. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin. Cancer Res., 9:68–75, 2003.
Shi, Y., Parhar, R.S., Zou, M., Hammami, M.M., Akhtar, M., Lum, Z.P., Farid, N.R., Al-Sedairy, S.T., Paterson, M.C. Tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA is elevated in advanced stages of thyroid carcinoma. British J. Cancer. 79:1234–1239, 1999.
Aust, G., Hofmann, A., Laue, S., Rost, A., Kohler, T., and Scherbaum, W.A. Human thyroid carcinoma cell lines and normal thyrocytes: expression and regulation of matrix metalloproteinase-1 and tissue matrix metalloproteinase inhibitor-1 messenger-RNA and protein. Thyroid, 7:713–724, 1997.
Hofmann, A., Laue, S., Rost, A.-K., Kohler, T., and Scherbaum, W.A., and Aust, G. mRNA levels of membrane-type 1 matrix metalloproteinase (MT1-MMP), MMP-2, and MMP-9 and of their inhibitors TIMP-2 and TIMP-3 in normal thyrocytes and thyroid carcinoma cell lines. Thyroid, 8:203–214, 1998.
Korem, S., Resnick, M.B., and Kraiem, Z. Similar and divergent patterns in the regulation of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of MMP-1 gene expression in benign and malignant human thyroid cells. J. Clin. Endocrinol. Metab., 84:3322–3327, 1999.
Heinrich, R., and Kraiem, Z. The protein kinase A pathway inhibits c-jun and c-fos protooncogene expression induced by the protein kinase C and tyrosine kinase pathways in cultured human thyroid follicles. J. Clin. Endocrinol. Metab., 82:1839–1844, 1997.
Damjanovski, S., Puzianowska-kuznicka, M., Ishuzuya-Oka, A., and Shi, Y-B. Differential regulation of three thyroid hormone-responsive matrix metalloproteinase genes implicates distinct functions during frog embryogenesis. FASEB J., 14:503–510, 2000.
Gohji, K., Fujimoto, N., Hara, I., Fujii, A., Gotoh, A., Okada, H., Arakawa, S., Kitazawa, S., Miyake, H., Kamidono, S., and Nakajima, M. Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. Int. J. Cancer. 79:96–101, 1998.
Pellegrini, P., Contasta, I., Berghella, A.M., Gargano, E., Mammarella, C., and Adorno, D. Simultaneous measurement of soluble carcinoembryonic antigen and the tissue inhibitor of metalloproteinase TIMP1 serum levels for use as markers of pre-invasive to invasive colorectal cancer. Cancer Immunology & Immunotherapy. 49:388–94, 2000.
Laack, E., Kohler, A., Kugler, C., Dierlamm, T., Knuffmann, C., Vohwinkel, G., Niestroy, A., Dahlmann, N., Peters, A., Berger, J., Fiedler, W., and Hossfeld, D.K. Pretreatment serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in non-small-cell lung cancer. Annals of Oncology. 13:1550–7, 2002.
Komorowski, J., Pasieka, Z., Jankiewicz-Wika, J., and Stepien, H. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer. Thyroid, 12:655–662, 2002.
Zucker, S., Cao, J., and Chen, W.-T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene, 19:6642–6650, 2000.
Coussens, L.M., Fingleton, B., and Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295:2387–2392, 2002.
Brand, K. Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Current Gene Therapy. 2:255–71, 2002.
Baker, A.H. Ahonen, M., and Kahari, V.M. Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy. Advances in Experimental Medicine & Biology. 465:469–83, 2000.
Shi, Y., Parhar, R.S., Zou, M., Al-Mohanna, F.A., and Paterson, M.C. Gene therapy of melanoma pulmonary metastasis by intramuscular injection of plasmid DNA encoding tissue inhibitor of metalloproteinases-1. Cancer Gene Therapy, 9:126–32, 2002.
Rigg, A.S. and Lemoine, N.R. Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Therapy. 8:869–78, 2001.
Ahonen, M., Ala-Aho, R., Baker, A.H., George, S.J., Grenman, R., Saarialho-Kere, U., and Kahari, V.M. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Molecular Therapy: the Journal of the American Society of Gene Therapy, 5:705–15, 2002.
Li, H., Lindenmeyer, F., Grenet, C., Opolon, P., Menashi, S., Soria, C., Yeh, P., Perricaudet, M., and Lu, H. AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Human Gene Therapy, 12:515–526, 2001.
Jiang, Y., Wang, M., Celiker, M.Y., Liu, Y.E., Sang, Q.X., Goldberg, I.D., and Shi, Y.E. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res., 61:2365–2370, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer Science + Business Media, Inc.
About this chapter
Cite this chapter
Shi, Y., Zou, M. (2005). Matrix Metalloproteinases in Thyroid Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_10
Download citation
DOI: https://doi.org/10.1007/1-4020-8107-3_10
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4020-8106-4
Online ISBN: 978-1-4020-8107-1
eBook Packages: MedicineMedicine (R0)
