Skip to main content

The Origin of Cancer

  • Chapter

Part of the Cancer Treatment and Research book series (CTAR,volume 122)

Keywords

  • Thyroid Cancer
  • Thyroid Carcinoma
  • Papillary Thyroid Carcinoma
  • Telomere Length
  • Familial Adenomatous Polyposis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knudson, A. G. Antioncogenes and human cancer. Proc Natl Acad Sci 90, 10914–10921 (1993).

    CAS  PubMed  Google Scholar 

  2. Knudson, A. G. Two genetic hits (more or less) to cancer. Nat Rev Cancer 1, 157–162 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  3. Hanahan, D., Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CrossRef  CAS  PubMed  Google Scholar 

  4. Armitage, P., Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8, 1–12 (1954).

    CAS  PubMed  Google Scholar 

  5. Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7, 139–146 (1993).

    CAS  PubMed  Google Scholar 

  6. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. Genetic alterations during colorectal-tumor development. N Engl J Med 319, 525–532 (1988).

    CAS  PubMed  Google Scholar 

  7. Fearon, E. R., Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 759–767 (1990).

    Google Scholar 

  8. Kinzler, K. W., Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CrossRef  CAS  PubMed  Google Scholar 

  9. Ichii, S., Horii, A., Nakatsuru, S., et al. Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum Mol Genet 1, 387–390 (1992).

    CAS  PubMed  Google Scholar 

  10. Groden, J., Thliveris, A., Samowitz, W., et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CrossRef  CAS  PubMed  Google Scholar 

  11. Nishisho, I., Nakamura, Y., Miyoshi, Y., et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  PubMed  Google Scholar 

  12. Levy, D. B., Smith, K. J., Beazer-Barclay, Y., et al. Inactivation of both APC alleles in human and mouse tumors. Cancer Res 54, 5953–5958 (1994).

    CAS  PubMed  Google Scholar 

  13. Shibata, D., Schaeffer, J., Li, Z. H., et al. Genetic heterogeneity of the c-K-ras locus in colorectal adenomas but not in adenocarcinomas. J Natl Cancer Inst 85, 1058–1063 (1993).

    CAS  PubMed  Google Scholar 

  14. Jen, J., Powell, S. M., Papadopoulos, N., et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res 54, 5523–5526 (1994).

    CAS  PubMed  Google Scholar 

  15. Shpitz, B. H. K., Medline, A., Bruce, W. R., et al. Natural history of aberrant crypt foci. Dis Colon Rectum 39, 763–767 (1996).

    CrossRef  CAS  PubMed  Google Scholar 

  16. Baker, S. J., Preisinger, A. C., Jessup, J. M., et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 50, 7717–7722 (1990).

    CAS  PubMed  Google Scholar 

  17. Garber, J. E., Goldstein, A. M., Kantor, A. F., et al. Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res 51, 6094–6607 (1991).

    CAS  PubMed  Google Scholar 

  18. Masters, J. R. Human cancer cell lines; fact and fantasy. Nat Rev Mol Cell Biol 1, 233–236 (2000).

    CrossRef  CAS  PubMed  Google Scholar 

  19. Golub, T. R., Slonim, D. K., Tamayo, P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  20. Yeang, C. H., Ramaswamy, S., Tamayo, P., et al. Molecular classification of multiple tumor types. Bioinformatics 17: Suppl 1, S316–S322 (2001).

    PubMed  Google Scholar 

  21. Newbold, R. E, Overell, R. W., Connell, J. R. Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 299, 633–635 (1982).

    CrossRef  CAS  PubMed  Google Scholar 

  22. Newbold, R. F., Overell, R. W. Fibroblast immortality is a prerequisite for transformation by EJ c-HA-ras oncogene. Nature 304, 648–651 (1983).

    CrossRef  CAS  PubMed  Google Scholar 

  23. Land, H., Parada L. F., Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    CrossRef  CAS  PubMed  Google Scholar 

  24. Ruley, H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).

    CAS  PubMed  Google Scholar 

  25. Sinn, E., Muller, W., Pattengale, P., et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic miceL synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    CrossRef  CAS  PubMed  Google Scholar 

  26. Thompson, T. C., Southgate, J., Kitchener, G., Land, H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56, 917–930 (1989).

    CAS  PubMed  Google Scholar 

  27. Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585–621 (1961).

    CrossRef  Google Scholar 

  28. Shay, J. W., Wright, W. E., Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072, 1–7 (1991).

    CAS  PubMed  Google Scholar 

  29. Bodnar, A. G., Ouellette, M., Frolkis, M., et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  30. Kiyono, T., Foster, S. A., Koop, J. I., et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    CAS  PubMed  Google Scholar 

  31. Shay, J. W., Wright, W. E. Quantitation of the frequency of immortalization of normal human diploid fibroblasts by SV40 large T-antigen. Exp Cell Res 184, 109–118 (1989).

    CrossRef  CAS  PubMed  Google Scholar 

  32. Shay, J. W., Pereira-Smith, O. M., Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196, 33–39 (1991).

    CrossRef  CAS  PubMed  Google Scholar 

  33. Ali, S. H., DeCaprio, J. A. Cellular transformation by SV40 large T antigen: Interaction with host proteins. Semin Cancer Biol 11, 15–23 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  34. Wei, W., Sedivy, J. M. Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res 253, 519–522 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  35. Stewart, N., Bacchetti, S. Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180, 49–57 (1991).

    CrossRef  CAS  PubMed  Google Scholar 

  36. Macera-Bloch, L., Houghton, J., Lenahan, M., et al. Termination of lifespan of SV40-transformed human fibroblasts in crisis is due to apoptosis. J Cell Physiol 190, 332–344 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  37. Harley, C. B., Futcher, A. B., Gredier, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CrossRef  CAS  PubMed  Google Scholar 

  38. Counter, C. M., Avilion, A. A., Le Feuvre, C. E., et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11, 1921–1929 (1992).

    CAS  PubMed  Google Scholar 

  39. Masutomi, K., Yu, E. Y, Khurts, S., et al. Telomerase maintains telomere structure in normal human cells. Cell 114, 241–253 (2003).

    CrossRef  CAS  PubMed  Google Scholar 

  40. Counter, C. M., Hahn, W. C., Wei, W., et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 95, 14723–14728 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  41. Halvorsen, T. L., Leibowitz, G., Levine, F. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol Cell Biol 19, 1864–1870 (1999).

    CAS  PubMed  Google Scholar 

  42. Zhu, J., Wang, H., Bishop, J. M., Blackburn, E. H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci 96, 3723–3728 (1999).

    CAS  PubMed  Google Scholar 

  43. Bryan, T. M., Englezou, A., Gupta, J., et al. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14, 4240–4248 (1995).

    CAS  PubMed  Google Scholar 

  44. Murnane, J. P., Sabatier, L., Marder, B. A., et al. Telomere dynamics in an immortal human cell line. EMBO J 13, 4953–4962 (1994).

    CAS  PubMed  Google Scholar 

  45. Dunham, M. A., Neumann, A. A., Fasching, C. L., et al. Telomere maintenance by recombination in human cells. Nat Genet 26, 447–450 (2000).

    CAS  PubMed  Google Scholar 

  46. O’Brien, W., Stenman, G., Sager, R. Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci USA 83, 8659–8663 (1986).

    Google Scholar 

  47. Sager, R. Senescence as a mode of tumor suppression. Environ Health Perspect 93, 59–62 (1991).

    CAS  PubMed  Google Scholar 

  48. Hahn, W. C., Counter, C. M., Lundberg, A. S., et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    CAS  PubMed  Google Scholar 

  49. Hahn, W. C., Dessain, S. K., Brooks, M. W., et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22, 2111–2123 (2002).

    CAS  PubMed  Google Scholar 

  50. Elenbaas, B., Spirio, L., Koerner, F., et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15, 50–65 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  51. Lundberg, A. S., Randell, S. H., Stewart, S. A., et al. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21, 4577–4586 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  52. Yu, J., Boyapati, A., Rundell K. Critical role for SV40 small-t antigen in human cell transformation. Virology 290, 192–198 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  53. Rich, J. N., Guo, C., McLendon, R. E., et al. A genetically tractable model of human glioma formation. Cancer Res 61, 3556–3560 (2001).

    CAS  PubMed  Google Scholar 

  54. Levine, A. J. p53, The cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  55. Dittmer, D., Pati, S., Zambetti, G., et al. Gain of function mutations in p53. Nat Genet 4, 42–46 (1993).

    CrossRef  CAS  PubMed  Google Scholar 

  56. Lowe, S. W. Activation of p53 by oncogenes. Endocr Relat Cancer 6, 45–48 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  57. Giaccia, A. J., Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12, 2973–2983 (1998).

    CAS  PubMed  Google Scholar 

  58. Shen, Y., White, E. p53-Dependent apoptosis pathways. Adv Cancer Res 82, 55–84 (2001).

    CAS  PubMed  Google Scholar 

  59. Yin, X. M., Oltvai, Z. N., Veis-Novack, D. J., et al. Bcl-2 gene family and the regulation of programmed cell death. Cold Spring Harb Symp Quant Biol 59, 387–393 (1994).

    CAS  PubMed  Google Scholar 

  60. Datta, S. R., Brunet, A., Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev 13, 2905–2927 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  61. Thornberry, N. A., Lazebnik, Y. Caspases: enemies within. Science 281, 1312–1316 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  62. Juven-Gershon, T., Oren, M. Mdm2: the ups and downs. Mol Med 5, 71–83 (1999).

    CAS  PubMed  Google Scholar 

  63. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2, 731–737 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  64. Sanchez-Aguilera, A., Sanchez-Beato, M., Garcia, J. F., et al. p14 (ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways. Blood 99, 1411–1418 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  65. Polsky, D., Bastian, B. C., Hazan, C., et al. HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melenoma. Cancer Res 61, 7642–7646 (2001).

    CAS  PubMed  Google Scholar 

  66. Ho, G. H., Calvano, J. E., Bisogna, M., et al. Genetic alterations of the p14ARF-hdm2-p53 regulatory pathway in breast carcinoma. Breast Cancer Res Treat 65, 225–232 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  67. Sharpless, N. E., Depinho, R. A. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9, 22–30 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  68. Gimm, O. Thyroid cancer. Cancer Lett 163, 143–156 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  69. Fagin, J. A., Matsuo, K., Karmakar, D. L., et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91, 179–184 (1993).

    CAS  PubMed  Google Scholar 

  70. Ito, T., Seyama, T., Mizuno, T., et al. Genetic alterations in thyroid tumor progression: association with p53 gene mutations. Jpn J Cancer Res 84, 526–531 (1993).

    CAS  PubMed  Google Scholar 

  71. Dobashi, Y., Sakamoto, A., Sugimura, M., et al. Overexpression of p53 as a possible prognostic factor in human thyroid carcinoma. Am J Surg Pathol 17, 375–381 (1993).

    CAS  PubMed  Google Scholar 

  72. Donghi, R., Longoni, A., Pilotti, P., et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91, 1753–1760 (1993).

    CAS  PubMed  Google Scholar 

  73. Kaelin, W. G. J. Functions of the retinoblastoma protein. Bioessays 21, 950–958 (1999).

    CrossRef  PubMed  Google Scholar 

  74. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev 12, 2245–2262 (1998).

    CAS  PubMed  Google Scholar 

  75. Sherr, C. J., McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112(2002).

    CrossRef  CAS  PubMed  Google Scholar 

  76. Rayman, J. B., Takahashi, Y., Indjeian, V. B., et al. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1 /mSin3B corepressor complex. Genes Dev 16, 933–947 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  77. Ogawa, H., Ishiguro, K., Gaubatz, S., et al. A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in Go cells. Science 296, 1132–1136 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  78. Roussel, M. F. The INK4 family of cell cycle inhibitors in cancer. Oncogene 18, 5311–5317 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  79. LaBaer, J., Garrett, M. D., Stevenson, L. F., et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 11, 847–862 (1997).

    CAS  PubMed  Google Scholar 

  80. Cheng, M., Olivier, P., Diehl, J. A., et al. The p21ClP1 and p27KlP1 CDK “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18, 1571–1583 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  81. Sellers, W. R., Kaelin, W. G. Role of the retinoblastoma protein in the pathogenesis of human cancer. J Clin Oncol 15, 3301–3312 (1997).

    CAS  PubMed  Google Scholar 

  82. Hahn, W. C., Weinberg, R. A. Modeling the molecular circuitry of cancer. Nat Rev Cancer 2, 331–341 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  83. Sicinski, P., Weinberg, R. A. A specific role for cyclin D1 in mammary gland development. J Mammary Gland Biol Neoplasia 2, 335–342 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  84. Jacks, T., Weinberg, R. A. The expanding role of cell cycle regulators. Science 280, 1035–1036 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  85. zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical applications. Nat Rev Cancer 2, 342–350 (2002).

    PubMed  Google Scholar 

  86. Ito, Y., Yoshida, H., Uruno, T., et al. p130 expression in thyroid neoplasms; its linkage with tumor size and dedifferentiation. Cancer Lett 192, 83–87 (2003).

    CrossRef  CAS  PubMed  Google Scholar 

  87. Anwar, F., Emond, M. J., Schmidt, R. A., et al. Retinoblastoma expression in thyroid neoplasms. Mod Pathol 13, 562–569 (2000).

    CAS  PubMed  Google Scholar 

  88. Holm, R., Nesland, J. M. Retinoblastoma and p53 tumour suppressor gene protein expression in carcinomas of the thyroid gland. J Pathol 172, 267–272 (1994).

    CrossRef  CAS  PubMed  Google Scholar 

  89. Harvey, M., Vogel, H., Lee, E. Y., et al. Mice deficient in both p53 and Rb develop tumors primarily of endocrine origin. Cancer Res 55, 1146–1151 (1995).

    CAS  PubMed  Google Scholar 

  90. Coxon, A. B., Ward, J. M., Geradts, J., et al. RET cooperates with RB/p53 inactivation in a somatic multi-step model for murine thyroid cancer. Oncogene 17, 1625–1628 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  91. Lee, E. Y., Cam, H., Ziebold, U., et al. E2F4 loss suppresses tumorigenesis in Rb mutant mice. Cancer Cell 2, 463–472 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  92. McCormick, F. Signalling networks that cause cancer. Trends Cell Biol 9, M53–M56 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  93. Press, M. F., Jones, L. A., Godolphin, W., et al. HER-2/neu oncogene amplification and expression in breast and ovarian cancers. Prog Clin Biol Res 354A, 209–221 (1990).

    CAS  PubMed  Google Scholar 

  94. Ross, J. S., Fletcher, J. A. HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am J Clin Pathol 112 Suppl 1, S53–S67 (1999).

    CAS  PubMed  Google Scholar 

  95. Kuan, C. T., Wikstrand, C. J., Bigner, D. D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 8, 83–96 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  96. Viglietto, G., Chiappetta, G., Martinez-Tello, F. J., et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11, 1207–1210 (1995).

    CAS  PubMed  Google Scholar 

  97. Asai, N., Murakami, H., Iwashita, T, Takahashi, M. A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem 271, 17644–17649 (1996).

    CAS  PubMed  Google Scholar 

  98. Pierotti, M. A., Bongarzone, I., Borrello, M. G., et al. Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Investig 18, 130–133 (1995).

    CAS  Google Scholar 

  99. van der Laan, B. F., Freeman, J. L., Asa, S. L. Expression of growth factors and growth factor receptors in normal and tumorous human thryroid tissues. Thyroid 5, 67–73 (1995).

    PubMed  Google Scholar 

  100. Lemoine, N. R., Hughes, C. M., Gullick, W. J., et al. Abnormalities of the EGF receptor system in human thyroid neoplasia. Int J Cancer 49, 558–561 (1991).

    CAS  PubMed  Google Scholar 

  101. Duh, Q. Y., Gum, E. T., Gerend, P. L., et al. Epidermal growth factor receptors in normal and neoplastic thyroid tissue. Surgery 98, 1000–1007 (1985).

    CAS  PubMed  Google Scholar 

  102. Hoelting T., S., A. E., Clark O. H., et al. Epidermal growth factor enhances proliferation, migration, and invasion of follicular and papillary thyroid cancer in vitro and in vivo. J Clin Endocrinol Metab 79, 401–408 (1994).

    CrossRef  CAS  PubMed  Google Scholar 

  103. Campbell, S. L., Khosravi-Far, R., Rossman, K.L. Increasing complexity of Ras signaling. Oncogene 17, 1395–1413 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  104. De Ruiter, N. D., Burgering B. M., Bos J. L. Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol Cell Biol 21, 8225–8235 (2001).

    PubMed  Google Scholar 

  105. Downward, J. Targeting ras signalling pathways in cancer therapy. Nat Rev Cancer 3, 11–22 (2003).

    CrossRef  CAS  PubMed  Google Scholar 

  106. Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  107. Ellis, C. A., Clark, G. The importance of being K-ras. Cell Signal 12, 425–434 (2000).

    CrossRef  CAS  PubMed  Google Scholar 

  108. Namba, H. R., S. A., Fagin, J. A. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4, 1474–1479 (1990).

    CAS  PubMed  Google Scholar 

  109. Lowy, D. R., Willumsen, B. M. Function and regulation of ras. Annu Rev Biochem 62, 851–891 (1993).

    CrossRef  CAS  PubMed  Google Scholar 

  110. Weiss, B., Bollag, G., Shannon, K. Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. Am J Med 89, 14–22 (1999).

    CAS  Google Scholar 

  111. Shields, J. M., Pruitt, K., McFall, A., et al. Understanding Ras: ‘it ain’t over ‘til it’s over’. Trends Cell Biol 10, 147–154 (2000).

    CrossRef  CAS  PubMed  Google Scholar 

  112. Davies, H., Bignell, G. R., Cox, C., et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  113. Kimura, E. T, Nikiforova, M. N., Zhu, Z., et al. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinomas. Cancer Res 63, 1454–1457 (2003).

    CAS  PubMed  Google Scholar 

  114. Cohen, Y., Xing, M., Mambo, E., et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95, 625–627 (2003).

    CAS  PubMed  Google Scholar 

  115. Bellacosa, A., de Feo, D., Godwin, A. K., et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64, 280–285 (1995).

    CAS  PubMed  Google Scholar 

  116. Simpson, L., Parsons, R. PTEN: life as a tumor suppressor. Exp Cell Res 264, 29–41 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  117. McEachern, M. J., Krauskopf, A., Blackburn, E. H. Telomeres and their control. Annu Reve Genet 34, 331–358 (2000).

    CAS  Google Scholar 

  118. Moyzis, R. K., Buckignham, J. M., Cram, L. S., et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci 85, 6622–6626 (1988).

    CAS  PubMed  Google Scholar 

  119. Henderson, E. R., Blackburn, E. H. An overhanging 3’ terminus is a conserved feature of telomeres. Mol Cell Biol 9, 345–348 (1989).

    CAS  PubMed  Google Scholar 

  120. McElligott, R., Wellinger, R. J. The terminal DNA structure of mammalian chromosomes. EMBO J 16, 3705–3714 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  121. Wright, W. E., Tesmer, V. M., Huffman, K. E., et al. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11, 2801–2809 (1997).

    CAS  PubMed  Google Scholar 

  122. Griffith, J. D., Comeau, L., Rosenfield, S., et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  123. Greider, C. W., Blackburn, E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    CrossRef  CAS  PubMed  Google Scholar 

  124. Nakamura, T. M., Cech, T. R. Reversing time: Origin of telomerase. Cell 92, 587–590 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  125. Nakamura, T. M., Morin, G. B., Chapman, K. B., et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  126. Karlseder, J., Broccoli, D., Dai, Y., et al. p53-and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  127. Blasco, M. A., Lee, H. W., Hande, M. P., et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  128. Hahn, W. C., Stewart, S. A., Brooks, M. W., et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5, 1164–1170 (1999).

    CAS  PubMed  Google Scholar 

  129. Zhu, X. D., Kuster, B., Mann, M., et al. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25, 347–352 (2000).

    CAS  PubMed  Google Scholar 

  130. Hsu, H. L., Gilley, D., Galande, S. A., et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14, 2807–2812 (2000).

    CrossRef  CAS  PubMed  Google Scholar 

  131. Hsu, H. L., Gilley, D., Blackburn, E. H., et al. Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96, 12454–12458 (1999).

    CAS  PubMed  Google Scholar 

  132. Kirk, K. E., Harmon, B. P., Reichardt, I. K., et al. Block in anaphase chromosome separation caused by a telomerase template mutation. Science 275, 1478–1481 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  133. de Lange, T. Protection of mammalian telomeres. Oncogene 21, 532–540 (2002).

    PubMed  Google Scholar 

  134. Bryan, T. M., Englezou, A., Dalla-Pozza, L., et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3, 1271–1274 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  135. Stewart, S. A., Hahn, W. C., O’Connor, B. F., et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 99, 12606–12611 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  136. Blasco, M. A., Hahn, W. C. Evolving views of telomerase and cancer. Trends Cell Biol 13, 289–294 (2003).

    CrossRef  CAS  PubMed  Google Scholar 

  137. Jones, C. J., Soley, A., Skinner, J. W., et al. Dissociation of telomere dynamics from telomerase activity in human thyroid cancer cells. Exp Cell Res 240, 333–339 (1998).

    CrossRef  CAS  PubMed  Google Scholar 

  138. Matthews, P., Jones, C. J., Skinner, J., et al. Telomerase activity and telomere length in thyroid neoplasia: biological and clinical implications. J Pathol 194, 183–193 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  139. Rouse, J., Jackson, S. P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  140. Lengauer, C., Kinzler, K. W., Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    CrossRef  CAS  PubMed  Google Scholar 

  141. Peltomaki, P., de la Chapelle, A. Mutations predisposing to hereditary nonpolyposis colorectal cancer. Adv Cancer Res 71, 93–119 (1997).

    CAS  PubMed  Google Scholar 

  142. Ionov, Y., Peinado, M. A., Malkhosyan, S., et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    CrossRef  CAS  PubMed  Google Scholar 

  143. Thibodeau, S. N., Bren, G., Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    CAS  PubMed  Google Scholar 

  144. Parsons, R., Li, G. M., Longley, M. J., et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    CrossRef  CAS  PubMed  Google Scholar 

  145. Eshleman, J. R., Lang, E. Z., Bowerfind, G. K., et al. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene 10, 33–37 (1995).

    CAS  PubMed  Google Scholar 

  146. de Laat, W. L., Jaspers, N. G., Hoeijmakers, H. J. Molecular mechanism of nucleotide excision repair. Genes Dev 13, 768–785 (1999).

    PubMed  Google Scholar 

  147. Kuzminov, A. Collapse and repair of replication forks in Eschenchia coli. Mol Microbiol 16, 373–384 (1995).

    CAS  PubMed  Google Scholar 

  148. Featherstone, C., Jackson, S. P. DNA double-strand break repair. Curr Biol 9, R759–761 (1999).

    CAS  PubMed  Google Scholar 

  149. Jiricny, J. Eukaryotic mismatch repair: an update. Mutat Res 409, 107–121 (1998).

    CAS  PubMed  Google Scholar 

  150. Smith, G. C., Jackson, S. P. The DNA-dependent protein kinase. Genes Dev 13, 916–934 (1999).

    CAS  PubMed  Google Scholar 

  151. Lowndes, N. F., Murguia, J. R. Sensing and responding to DNA damage. Curr Opin Genet Dev 10, 17–25 (2000).

    CrossRef  CAS  PubMed  Google Scholar 

  152. Abraham, R. T. cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177–2196 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  153. Cahill, D. P., Kinzler, K. W., Vogelstein, B., Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 9, M57–60 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

  154. Folkman, J. The role of angiogenesis in tumor growth. Semin Cancer Biol 3, 65–71 (1992).

    CAS  PubMed  Google Scholar 

  155. Hanahan D, F. J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CrossRef  CAS  PubMed  Google Scholar 

  156. Fidler, I.J., Singh, R. K., Yoneda, J., et al. Critical determinants of neoplastic angiogenesis. Cancer J 6: Suppl 3, S225–S236 (2000).

    PubMed  Google Scholar 

  157. Dameron, K. M., Volpert, O. V., Tainsky, M. A., et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    CAS  PubMed  Google Scholar 

  158. Kieser, A., Weich, H. A., Brandner. G., et al. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9, 963–969 (1994).

    CAS  PubMed  Google Scholar 

  159. Egeblad, M. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  160. Jones, P. A., Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  161. Esteller, M., Herman, J. G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196, 1–7 (2002).

    CrossRef  CAS  PubMed  Google Scholar 

  162. Ehrlich, M. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 10, 2709–2721 (1982).

    CAS  PubMed  Google Scholar 

  163. Antequera, F., Bird, A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90, 11995–11999 (1993).

    CAS  PubMed  Google Scholar 

  164. Grady, W. M., Willis, J., Guilford, P. J., et al. Methylation of the CDH1 promoter as the second genetic-hit in hereditary diffuse gastric cancer. Nat Genet 26, 16–17 (2000).

    CAS  PubMed  Google Scholar 

  165. Myohanen, S. K., Baylin, S. B., Herman, J. G. Hypermethylation can selectively silence individual p15ink4A alleles in neoplasia. Cancer Res 58, 591–593 (1998).

    CAS  PubMed  Google Scholar 

  166. Esteller, M., Fraga, M. F., Guo, J., et al. DNA methylation patterns in herditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10, 3001–3007 (2001).

    CrossRef  CAS  PubMed  Google Scholar 

  167. Belinsky, S. A., Nikula, K. J., Baylin, S. B., Issa, J. P. Increased cytosine DNA methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci USA 93, 4045–4050 (1996).

    CrossRef  CAS  PubMed  Google Scholar 

  168. Issa, J. P., Vertino, P. M., Wu, J., et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85, 1235–1240 (1993).

    CAS  PubMed  Google Scholar 

  169. de Marzo, A. M., Marchi, V. L., Yang, E. S., et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res 59, 3855–3860 (1999).

    PubMed  Google Scholar 

  170. Ahluwalia, A., Hurteau, J. A., Bigsby, R. M., Nephew, K. P. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 82, 299–304 (2001).

    CAS  PubMed  Google Scholar 

  171. Vertino, P. M., Yen, R. W., Gao, J., Baylin, S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransfererase. Mol Cell Biol 16, 4555–4565 (1996).

    CAS  PubMed  Google Scholar 

  172. Wu, J., Issa, J. P., Herman, D. E., et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci USA 90, 8891–8895 (1993).

    CAS  PubMed  Google Scholar 

  173. Bakin, A. V., Curran, T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283, 387–390 (1999).

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Yu, E.Y., Hahn, W.C. (2005). The Origin of Cancer. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics