Skip to main content

Active Pixel Sensor Design: From Pixels to Systems

  • Chapter
CMOS Imagers

Abstract

Since active pixel sensors (APS) are fabricated in a commonly used CMOS process, image sensors with integrated “intelligence” can be designed. These sensors are very useful in many scientific, commercial and consumer applications. Current state-of-the-art CMOS imagers allow integration of all functions required for timing, exposure control, color processing, image enhancement, image compression, and ADC on the same die. In addition, CMOS imagers offer significant advantages and rival traditional charge coupled devices (CCDs) in terms of low power, low voltage and monolithic integration. This chapter presents different types of CMOS pixels and introduces the system-on-a-chip approach, showing examples of two “smart” APS imagers. The camera-on-a-chip approach is introduced, focusing on the advantages of CMOS sensors on CCDs. Different types of image sensors are described and their modes of operation briefly explained. Two examples of CMOS imagers are presented, a smart vision system-on-a-chip and a smart tracking sensor. The former is based on a photodiode APS with linear output over a wide dynamic range, made possible by random access to each pixel and by the insertion of additional circuitry into the pixels. The latter is a smart tracking sensor employing analog non-linear winner-take-all (WTA) selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. E. R. Fossum, “Active pixel sensors (APS)-Are CCDs dinosaurs?” Proc. SPIE, vol. 1900, pp. 2–14, 1992.

    Google Scholar 

  2. D. Litwiller, “CCD vs. CMOS: facts and fiction,” Photonics Spectra, pp. 154–158, January 2001.

    Google Scholar 

  3. P. Seitz, “Solid-state image sensing,” in Handbook of Computer Vision and Applications, vol. 1, 165–222, Academic Press, 2000.

    Google Scholar 

  4. E. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Devices, vol. 44, p. 1689, 1997.

    Article  Google Scholar 

  5. O. Yadid-Pecht and A. Belenky, “In-pixel autoexposure CMOS APS,” IEEE J. Solid-State Circuits, vol. 38(8), pp. 1–4, August 2003.

    Article  Google Scholar 

  6. A. Fish, D. Turchin, and O. Yadid-Pecht, “An APS with 2-dimensional winner-take-all selection employing adaptive spatial filtering and false alarm reduction,” IEEE Trans. Electron Devices, vol. 50(1), pp. 159–165, January 2003.

    Article  Google Scholar 

  7. G. Weckler, “Operation of p-n junction photodetectors in a photon flux integrating mode,” IEEE J. Solid-State Circuits, vol. SC-2, p. 65, 1967.

    Google Scholar 

  8. P. Noble, “Self-scanned image detector arrays,” IEEE Trans. Electron Devices, vol. ED-15, p. 202, 1968.

    Google Scholar 

  9. F. Andoh, K. Taketoshi, J. Yamazaki, M, Sagawara, Y. Fujita, K. Mitani, Y. Matuzawa, K. Miyata, and S. Araki, “A 250,000 pixel image sensor with FET amplification at each pixel for high speed television cameras,” IEEE ISSCC 1990 Dig. Tech. Papers, 1990, pp. 212–213.

    Google Scholar 

  10. S. K. Mendis, B. Pain, S. Kemeny, R. C. Gee, Q. Kim, and E. Possum, “CMOS active pixel image sensors for highly integrated imaging systems,” IEEE J. Solid-State Circuits, vol. SC-32, pp. 187–198, 1997.

    Google Scholar 

  11. N. Ricquier and B. Dierickx, “Pixel structure with logarithmic response for intelligent and flexible imager architectures,” Microelectron. Eng., vol. 19, pp. 631–634, 1992.

    Article  Google Scholar 

  12. O. Yadid-Pecht, R. Ginosar, and Y. Diamand, “A random access photodiode array for intelligent image capture,” IEEE J. Solid-State Circuits, vol. SC-26, pp. 1116–1122, 1991.

    Google Scholar 

  13. R. Hornsey, Design and Fabrication of Integrated Image Sensors (course), Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada, 1998.

    Google Scholar 

  14. B. Pain, CMOS Digital Image Sensors (SPIE course), San Jose, CA, USA, 2001.

    Google Scholar 

  15. N. Marston, “Solid-state imaging: a critique of the CMOS sensor,” Ph.D. Thesis, The University of Edinburgh, UK, Nov. 1998.

    Google Scholar 

  16. C. Mead, “A sensitive electronic photoreceptor,” in 1985 Chapel Hill Conf. on VLSI, H. Fuchs, Ed. Rockville, MD: Computer Science Press, 1985, pp. 463–471.

    Google Scholar 

  17. K. A. Boahen and A. G. Andreou, “A contrast-sensitive retina with reciprocal synapses,” Adv. Neural Information Processing, vol. 4, pp. 762–772, 1992.

    Google Scholar 

  18. C. Mead, Analog VLSI and Neural Networks, Addison Wesley, 1989.

    Google Scholar 

  19. K. A. Boahen, “The retinotopic approach: pixel parallel adaptive amplification, filtering, and quantization,” Analog Integrated Circuits and Signal Processing, vol. 13, pp. 53–68, 1997.

    Article  Google Scholar 

  20. T. Delbruck and C. Mead, “Adaptive photoreceptor with wide dynamic range,” in Proc. IEEE Int. Symp. Circuits and Systems, London, UK, May 30–June 2, 1994, pp. 339–342.

    Google Scholar 

  21. V. Ward, M. Syrzycki, and G. Chapman, “CMOS photodetector with built-in light adaptation mechanism,” Microelectronics J., vol. 24, no. 5, pp. 547–553, Aug. 1993.

    Google Scholar 

  22. W. Yang, “A wide-dynamic-range, low power photosensor array,” IEEE ISSCC 1994 Dig. Tech. Papers, 1994, pp. 230–231.

    Google Scholar 

  23. R. Miyagawa and T. Kanade, “Integration time based computational image sensor,” in 1995 IEEE Workshop on CCDs and Advanced Image Sensors, Dana Point, California, USA, April 20–22, 1995.

    Google Scholar 

  24. O. Yadid-Pecht, “Widening the dynamic range of pictures,” in Proc. SPIE/IS&T Symp. on Electronic Imaging: Science and Technology, San Jose, California, Feb.9–14, 1992, SPIE vol. 1656, pp. 374–382.

    Google Scholar 

  25. O. Yadid-Pecht, “Method and apparatus for increasing the dynamic range of optical sensors,” Israeli Patent number 100620, Feb. 1995.

    Google Scholar 

  26. O. Yadid-Pecht, “Wide dynamic range sensors,” Opt. Eng., vol. 38, no. 10, pp. 1650–1660, Oct. 1999.

    Article  Google Scholar 

  27. O. Yadid-Pecht and E. Fossum, “Image sensor with ultra-high linear-dynamic range utilizing dual output CMOS active pixel sensors,” IEEE Trans. Elec. Dev., Special Issue on Solid State Image Sensors, vol. 44, no. 10, pp. 1721–1724, Oct. 1997.

    Google Scholar 

  28. T. Nakamura and K. Saitoh, “Recent progress of CMD imaging,” in Proc. 1997 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Bruges, Belgium, June 5–7, 1997.

    Google Scholar 

  29. Y. Wang, S. Barna, S. Campbell, and E. R. Fossum, “A high dynamic range CMOS APS image sensor,” presented at the IEEE Workshop CCD and Advanced Image Sensors, Lake Tahoe, Nevada, USA, June 7–9, 2001.

    Google Scholar 

  30. D. X. D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640×512 CMOS image sensor with ultra wide dynamic range floating point pixel level ADC,” IEEE ISSCC 1999 Dig. Tech. Papers, 1999, WA 17.5.

    Google Scholar 

  31. T. Lule, M. Wagner, M. Verhoven, H. Keller, and M. Bohm, “10000-pixel, 120 dB imager in TFA technology,” IEEE J. Solid State Circuits, vol. 35, no. 5, pp. 732–739, May 2000.

    Article  Google Scholar 

  32. E. Culurciello, R. Etienne-Cummings, and K. Boahen, “Arbitrated address event representation digital image sensor,” IEEE ISSCC 2001 Dig. Tech. Papers, (Cat. No. 01CH37177), Piscataway, NJ, USA, 2001, pp. 92–3.

    Google Scholar 

  33. L. G. McIlrath, “A low-power, low-noise, ultrawide-dynamic-range CMOS imager with pixel-parallel A/D conversion,” IEEE J. Solid State Circuits, vol. 36, no. 5, pp. 846–853, May 2001.

    Article  Google Scholar 

  34. T. Hamamoto and K. Aizawa, “A computational image sensor with adaptive-pixel-based integration time,” IEEE J. Solid State Circuits, vol. 36, no. 4, pp. 580–585, Apr. 2001.

    Article  Google Scholar 

  35. O. Yadid-Pecht and A. Belenky, “Autoscaling CMOS APS with customized increase of dynamic range,” in Proc. IEEE ISSCC, San Francisco, CA, USA, February 4–7, 2001, pp. 100–101.

    Google Scholar 

  36. O. Yadid-Pecht, “The automatic wide dynamic range sensor,” in 1993 SID Int. Symp., Seattle, WA, USA, May 18–20, 1993, pp. 495–498.

    Google Scholar 

  37. O. Yadid-Pecht, B. Pain, C. Staller, C. Clark, and E. Fossum, “CMOS active pixel sensor star tracker with regional electronic shutter,” IEEE J. Solid State Circuits, vol. 32, no. 2, pp. 285–288, Feb. 1997.

    Article  Google Scholar 

  38. O. Yadid-Pecht, E. R. Fossum, and C. Mead, “APS image sensors with a winner-take-all (WTA) mode of operation,” JPL/Caltech New Technology Report, NPO 20212.

    Google Scholar 

  39. Z. S. Gunay and E. Sanches-Sinencio, “CMOS winner-take-all circuits: a detail comparison,” in IEEE ISCAS’97, Hong Kong, June 9–12, 1997, pp. 41–44.

    Google Scholar 

  40. J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C.A. Mead, “Winner-tale-all networks of O(n) complexity,” in Advances in Neural Information Processing Systems, Vol. 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 703–711.

    Google Scholar 

  41. J. A. Startzyk and X. Fang, “CMOS current mode winner-take-all circuit with both excitatory and inhibitory feedback,” Electronics Lett., vol. 29, no. 10, pp. 908–910, May 13, 1993.

    Google Scholar 

  42. G. Indivery, “A current-mode hysteretic winner-take-all network, with excitatory and inhibitory coupling,” Analog Integrated Circuits and Signal Processing, vol. 28, pp. 279–291, 2001.

    Google Scholar 

  43. T. Serrano and B. Linares-Barranco, “A modular current-mode high-precision winnertake-all circuit.” IEEE Trans. Circuits and Systems II, vol. 42, no. 2, pp. 132–134, Feb. 1995.

    Google Scholar 

  44. G. Indiveri, “Neuromorphic analog VLSI sensor for visual tracking: circuits and application examples,” IEEE Trans. Circuits and Systems II, vol. 46, no. 11, pp. 1337–1347, Nov. 1999.

    Google Scholar 

  45. S. P. DeWeerth and T. G. Morris, “CMOS current mode winner-take-all circuit with distributed hysteresis,” Electronics Lett., vol. 31, no. 13, pp.1051–1053, 22 June 1995.

    Article  Google Scholar 

  46. D. M. Wilson and S. P. DeWeerth, “Winning isn’t everything,” in IEEE ISCAS’95, Seattle, WA. USA, 1995, pp. 105–108.

    Google Scholar 

  47. R. Kalim and D. M. Wilson, “Semi-parallel rank-order filtering in analog VLSI,” in IEEE ISCAS’99, Piscataway, NJ, USA, 1999, vol. 2, pp. 232–5.

    Google Scholar 

  48. N. Donckers, C. Dualibe, and M. Verleysen, “Design of complementary low-power CMOS architectures for loser-take-all and winner-take-all,” Proc. 7th Int. Conf. on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, Los Alamitos, CA, USA: IEEE Comput. Soc., pp. P360–5, 1999.

    Google Scholar 

  49. T. G. Moris and S. P. DeWeerth, “A smart-scanning analog VLSI visual-attention system,” Analog Integrated Circuits and Signal Processing, vol. 21, pp. 67–78, 1999.

    Google Scholar 

  50. Z. Kalayjian, J. Waskiewicz, D. Yochelson, and A. G. Andreou, “Asynchronous sampling of 2D arrays using winner-takes-all arbitration,” IEEE ISCAS’96, New York, USA, 1996, vol. 3, pp. 393–6.

    Google Scholar 

  51. T. G. Moris, C. S. Wilson, and S. P. DeWeerth, “Analog VLSI circuits for sensory attentive processing,” IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, 1996, pp. 395–402.

    Google Scholar 

  52. T. G. Morris, T. K. Horiuchi, and P. DeWeerth, “Object-based selection within an analog visual attention system,” IEEE Trans. Circuits and Systems II, Analog and Digital Signal Processing, vol. 45, no. 12, pp. 1564–1572, Dec. 1998.

    Google Scholar 

  53. A. Fish and O. Yadid-Pecht, “CMOS current/voltage mode winner-take-all circuit with spatial filtering,” Proc. IEEE ISCAS’01, Sydney, Australia, May 2001, vol. 2, pp. 636–639.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Fish, A., Yadid-Pecht, O. (2004). Active Pixel Sensor Design: From Pixels to Systems. In: Yadid-Pecht, O., Etienne-Cummings, R. (eds) CMOS Imagers. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7962-1_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7962-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7961-0

  • Online ISBN: 978-1-4020-7962-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics