Skip to main content

CMOS APS MTF Modeling

  • Chapter
CMOS Imagers

Abstract

The modulation transfer function (MTF) of an optical or electro-optical device is one of the most significant factors determining the image quality. Unfortunately, characterization of the MTF of the semiconductor-based focal plane arrays (FPA) has typically been one of the more difficult and error-prone performance testing procedures. Based on a thorough analysis of experimental data, a unified model has been developed for estimation of the overall CMOS active pixel sensor (APS) MTF for scalable CMOS technologies. The model covers the physical diffusion effect together with the influence of the pixel active area geometrical shape. Agreement is excellent between the results predicted by the model and the MTF calculated from the point spread function (PSF) measurements of an actual pixel. This fit confirms the hypothesis that the active area shape and the photocarrier diffusion effect are the determining factors of the overall CMOS APS MTF behavior, thus allowing the extraction of the minority-carrier diffusion length. Section 2.2 presents the details of the experimental measurements and the data acquisition method. Section 2.3 describes the physical analysis performed on the acquired data, including the fitting of the data and the relevant parameter derivation methods. Section 2.4 presents a computer model that empirically produces the PSF of the pixel. The comparisons between the modeled data and the actual scanned results are discussed in Section 2.5. Section 2.6 summarizes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. H. Seib, “Carrier diffusion degradation of modulation transfer function in charge coupled imagers,” IEEE Trans. Electron Devices, vol. 21, ED-3, pp. 210–217, 1974.

    Google Scholar 

  2. S. G. Chamberlain and D. H. Harper, “MTF simulation including transmittance effects of CCD,” IEEE Trans. Electron Devices, vol. 25, ED-2, pp. 145–154, 1978.

    Google Scholar 

  3. M. Blouke and D. Robinson, “A method for improving the spatial resolution of frontside-illuminated CCDs,” IEEE Trans. Electron Devices, vol. 28, pp. 251–256, Mar. 1981.

    Google Scholar 

  4. J. P. Lavine, E. A. Trabka, B. C. Burkey, T. J. Tredwell, E. T. Nelson and C. N. Anagnosyopoulos, “Steady-state photocarrier collection in silicon imaging devices,” IEEE Trans. Electron Devices, vol. 30, ED-9, pp. 1123–1134, Sept. 1983.

    Google Scholar 

  5. J. P. Lavine, W. Chang, C. N. Anagnosyopoulos, B. C. Burkey and E. T. Nelson, “Monte Carlo simulation of the photoelectron crosstalk in silicon imaging devices,” IEEE Trans. Electron Devices, vol. 32, ED-10, pp. 2087–2091, 1985.

    Google Scholar 

  6. E. G. Stevens, “A unified model of carrier diffusion and sampling aperture effects on MTF in solid-state image sensors,” IEEE Trans. Electron Devices, vol. 39, ED-11, pp. 2621–2623, 1992.

    Google Scholar 

  7. E. G. Stevens and J. P. Lavine, “An analytical, aperture and two-layer diffusion MTF and quantum efficiency model for solid-state image sensors,” IEEE Trans. Electron Devices, vol. 41, ED-10, pp. 1753–1760, 1994.

    Article  Google Scholar 

  8. D. Kavaldjiev and Z. Ninkov, “Subpixel Sensitivity Map for a Charge Coupled Device sensor,” Opt. Eng., vol. 37, no. 3, pp. 948–954, Mar. 1998.

    Article  Google Scholar 

  9. T. O. Körner and R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices, vol. 47, ED-5, pp. 931–938, May 2000.

    Google Scholar 

  10. O. Yadid-Pecht, “The geometrical modulation transfer function (MTF) for different pixel active area shapes,” Opt. Eng., vol. 39, no. 4, pp. 859–865, 2000.

    Article  Google Scholar 

  11. N. S. Kopeika, A System Engineering Approach to Imaging, Bellingham, WA, USA: SPIE Press, 1998.

    Google Scholar 

  12. T. Dutton, T. Lomheim and M. Nelsen “Survey and comparison of focal plane MTF measurement techniques,” Proc. SPIE, vol. 4486, pp. 219–246, 2002.

    Google Scholar 

  13. O. Yadid-Pecht, “CMOS Imagers” (course notes), Ben Gurion University, Beer-Sheva, Israel, 2000.

    Google Scholar 

  14. S. M. Sze, Physics of Semiconductor Devices, New York: J. Wiley and Sons, 1981.

    Google Scholar 

  15. P. Bhattacharya, Semiconductor Optoelectronic Devices, Upper Saddle River, NJ: Prentice Hall, 1993.

    Google Scholar 

  16. T. Spirig, “Smart CCD/CMOS based image sensor with programmable real time temporal, and spatial convolution capabilities for application in machine vision and optical metrology,” Dissertation #11993, ETH, Switzerland.

    Google Scholar 

  17. C. Lin et al., “Analytical charge collection and MTF model for photodiode-based CMOS imagers,” IEEE Trans. Electron Devices, vol. 49, ED-5, pp. 754–761, May 2002.

    Google Scholar 

  18. D. Ramey and J. T. Boyd, “Computer simulation of optical crosstalk in linear imaging arrays,” IEEE J. Quantum Electron., vol. 17, pp. 553–556, Apr. 1981.

    Google Scholar 

  19. H. Wong, “Technology and device scaling considerations for CMOS imagers,” IEEE Trans. Electron Devices, vol. 43, no. 12, pp. 2131–2142, Dec. 1996.

    Google Scholar 

  20. I. Shcherback, B. Belotserkovsky, A. Belenky and O. Yadid-Pecht, “A unique submicron scanning system use for CMOS APS crosstalk characterization,” in SPIE/IS&T Symp. Electronic Imaging: Science and Technology, Santa Clara, CA, USA, Jan. 20–24, 2003.

    Google Scholar 

  21. I. Shcherback and O. Yadid-Pecht, “CMOS APS crosstalk characterization via a unique sub-micron scanning system,” IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1994–1997, Sept. 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Shcherback, I., Yadid-Pecht, O. (2004). CMOS APS MTF Modeling. In: Yadid-Pecht, O., Etienne-Cummings, R. (eds) CMOS Imagers. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7962-1_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7962-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7961-0

  • Online ISBN: 978-1-4020-7962-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics