Skip to main content

Nitric Oxide, Cell Death, and Heart Failure

  • Chapter
Book cover The Role of Nitric Oxide in Heart Failure

Abstract

Strong evidence links cardiomyocyte loss to the pathology of some forms of heart failure. Both necrotic and apoptotic modes of cell death have been invoked as the mechanism underlying progressive cardiomyocyte dropout. Nitric oxide (NO) has received particular attention as a candidate reactive oxygen intermediate that influences not only cardiac function, but also cell death elicited by both apoptotic and necrotic mechanisms. NO is produced by resident cardiac cells under stress, and is produced in large quantities by activated immune cells that infiltrate the injured heart. A review of the literature, however, reveals that the actions of NO on apoptotic cell death are complex, especially in the context of heart disease, and that the practical contribution of NO to cell death in heart disease is yet to be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colucci WS, Braunwald E. Pathophysiology of Heart Failure, 6th ed. Philadephia: W.B. Saunders Company, 2001. (Braunwald E, Zipes DP, Libby P, eds. Heart Disease: A textbook of Cardiovascular Medicine).

    Google Scholar 

  2. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardial 1991;68(14):7D–16D.

    CAS  Google Scholar 

  3. Curtiss C, Cohn JN, Vrobel T, Franciosa JA. Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 1978;58(5):763–770.

    CAS  PubMed  Google Scholar 

  4. Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN. Activity of the sympathetic nervous system and reninangiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982;49(7):1659–1666.

    Article  CAS  PubMed  Google Scholar 

  5. Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988;319(2):80–86.

    CAS  PubMed  Google Scholar 

  6. Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002;415(6868):240–243.

    Article  CAS  PubMed  Google Scholar 

  7. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344(23):1750–1757.

    Article  CAS  PubMed  Google Scholar 

  8. Kang PM, Izumo S. Apoptosis and heart failure: A critical review of the literature. Circ Res 2000;86(11):1107–1113.

    CAS  PubMed  Google Scholar 

  9. Sabbah HN. Apoptotic cell death in heart failure. Cardiovasc Res 2000;45(3):704–712.

    Article  CAS  PubMed  Google Scholar 

  10. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336(16):1131–1141.

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272(5 Pt 2):H2313–H2319.

    CAS  PubMed  Google Scholar 

  12. Leri A, Liu Y, Malhotra A, et al. Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes. Circulation 1998;97(2):194–203.

    CAS  PubMed  Google Scholar 

  13. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996;28(9):2005–2016

    Article  CAS  PubMed  Google Scholar 

  14. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation 1997;95(2):320–323.

    CAS  PubMed  Google Scholar 

  15. Toyozaki T, Hiroe M, Tanaka M, Nagata S, Ohwada H, Marumo F. Levels of soluble Fas ligand in myocarditis. Am J Cardiol 1998;82(2):246–248.

    Article  CAS  PubMed  Google Scholar 

  16. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335(16):1182–1189.

    Article  CAS  PubMed  Google Scholar 

  17. Anversa P, Kajstura J. Myocyte cell death in the diseased heart. Circ Res 1998;82(11):1231–1233.

    CAS  PubMed  Google Scholar 

  18. Eastman A, Barry MA. The origins of DNA breaks: A consequence of DNA damage, DNA repair, or apoptosis? Cancer Invest 1992;10(3):229–240.

    CAS  PubMed  Google Scholar 

  19. Gold R, Schmied M, Giegerich G, et al. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest 1994;71(2):219–225.

    CAS  PubMed  Google Scholar 

  20. Kanoh M, Takemura G, Misao J, et al. Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: Not apoptosis but DNA repair. Circulation 1999;99(21):2757–2764.

    CAS  PubMed  Google Scholar 

  21. Ohno M, Takemura G, Ohno A, et al. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: Analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 1998;98(14):1422–1430.

    CAS  PubMed  Google Scholar 

  22. Sloop GD, Roa JC, Delgado AG, Balart JT, Hines MO, 3rd, Hill JM. Histologic sectioning produces TUNEL reactivity. A potential cause of false-positive staining. Arch Pathol Lab Med 1999;123(6):529–532.

    CAS  PubMed  Google Scholar 

  23. Haunstetter A, Izumo S. Apoptosis: Basic mechanisms and implications for cardiovascular disease. Circ Res 1998;82(11):1111–1129.

    CAS  PubMed  Google Scholar 

  24. Haunstetter A, Izumo S. Future perspectives and potential implications of cardiac myocyte apoptosis. Cardiovasc Res 2000;45(3):795–801.

    Article  CAS  PubMed  Google Scholar 

  25. Haunstetter A, Izumo S. Toward antiapoptosis as a new treatment modality. Circ Res 2000;86(4):371–376.

    CAS  PubMed  Google Scholar 

  26. Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999;97(2):189–198.

    Article  CAS  PubMed  Google Scholar 

  27. Pannitteri G, Marino B, Campa PP, Martucci R, Testa U, Peschle C. Interleukins 6 and 8 as mediators of acute phase response in acute myocardial infarction. Am J Cardiol 1997;80(5):622–625.

    CAS  PubMed  Google Scholar 

  28. Wencker D, Nguyen K, Khine C, et al. Myocyte apoptosis is sufficient to cause dilated cardiomyopathy. Circulation 1999;100(Suppl I):1–17.

    Google Scholar 

  29. Geng YJ, Ishikawa Y, Vatner DE, et al. Apoptosis of cardiac myocytes in Gsalpha transgenic mice. Circ Res 1999;84(1):34–42.

    CAS  PubMed  Google Scholar 

  30. Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987;235(4787):473–476.

    CAS  PubMed  Google Scholar 

  31. Hibbs JB Jr, Vavrin Z, Taintor RR. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 1987;138(2):550–565.

    CAS  PubMed  Google Scholar 

  32. Brown GC, Borutaite V. Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 1999;66:17–25.

    CAS  PubMed  Google Scholar 

  33. Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1999;1411(2–3):351–369.

    CAS  PubMed  Google Scholar 

  34. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989;83(5):1774–1777.

    CAS  PubMed  Google Scholar 

  35. Hausladen A, Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 1994;269(47):29405–29408.

    CAS  PubMed  Google Scholar 

  36. Albina JE, Cui S, Mateo RB, Reichner JS. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 1993;150(11):5080–5085.

    CAS  PubMed  Google Scholar 

  37. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vase Biol 1997;17(10):1846–1858.

    CAS  Google Scholar 

  38. de Belder AJ, Radomski MW, Why HJ, et al. Nitric oxide synthase activities in human myocardium. Lancet 1993;341(8837):84–85.

    PubMed  Google Scholar 

  39. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF. Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J 1995;74(4):426–430.

    PubMed  Google Scholar 

  40. Haywood GA, Tsao PS, von der Leyen HE, et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93(6):1087–1094.

    CAS  PubMed  Google Scholar 

  41. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta. J Clin Invest 1995;95(2):677–685.

    CAS  PubMed  Google Scholar 

  42. Szabolcs M, Michler RE, Yang X, et al. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 1996;94(7):1665–1673.

    CAS  PubMed  Google Scholar 

  43. Lepoivre M, Flaman JM, Bobe P, Lemaire G, Henry Y. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem 1994;269(34):21891–21897.

    CAS  PubMed  Google Scholar 

  44. Szabo C, Zingarelli B, O’Connor M, Salzman AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 1996;93(5):1753–1758.

    Article  CAS  PubMed  Google Scholar 

  45. Messmer UK, Ankarcrona M, Nicotera P, Brune B. p53 expression in nitric oxide-induced apoptosis. FEBS Lett 1994;355(1):23–26.

    CAS  PubMed  Google Scholar 

  46. Ghafourifar P, Bringold U, Klein SD, Richter C. Mitochondrial nitric oxide synthase, oxidative stress and apoptosis. Biol Signals Recept 2001;10(1–2):57–65.

    CAS  PubMed  Google Scholar 

  47. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  48. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99(22):2934–2941.

    Google Scholar 

  49. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996;328(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  50. Forrester K, Ambs S, Lupold SE, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 1996;93(6):2442–2447.

    Article  CAS  PubMed  Google Scholar 

  51. Pinsky DJ, Aji W, Szabolcs M, et al. Nitric oxide triggers programmed cell death (apoptosis) of adult rat ventricular myocytes in culture. Am J Physiol 1999;277(3 Pt 2):H1189–H1199.

    CAS  PubMed  Google Scholar 

  52. Mortensen K, Skouv J, Hougaard DM, Larsson LI. Endogenous endothelial cell nitric-oxide synthase modulates apoptosis in cultured breast cancer cells and is transcriptionally regulated by p53. J Biol Chem 1999;274(53):37679–37684.

    Article  CAS  PubMed  Google Scholar 

  53. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270(5240):1326–1331.

    CAS  PubMed  Google Scholar 

  54. Jun CD, Pae HO, Kwak HJ, et al. Modulation of nitric oxide-induced apoptotic death of HL-60 cells by protein kinase C and protein kinase A through mitogen-activated protein kinases and CPP32-like protease pathways. Cell Immunol 1999;194(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  55. Taimor G, Rakow A, Piper HM. Transcription activator protein 1 (AP-1) mediates NO-induced apoptosis of adult cardiomyocytes. FASEB J 2001;15(13):2518–2520.

    CAS  PubMed  Google Scholar 

  56. Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res 2001;88(3):305–312.

    CAS  PubMed  Google Scholar 

  57. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990;30:535–560.

    Article  CAS  PubMed  Google Scholar 

  58. Moncada S, Higgs A. The L-arginine-nitricoxide pathway. N Engl J Med 1993;329(27):2002–2012.

    Article  CAS  PubMed  Google Scholar 

  59. Shimojo T, Hiroe M, Ishiyama S, Ito H, Nishikawa T, Marumo F. Nitric oxide induces apoptotic death of cardiomyocytes via a cyclic-GMP-dependent pathway. Exp Cell Res 1999;247(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  60. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA. Cytokinemediated apoptosis in cardiac myocytes: The role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 1999;85(9):829–840.

    CAS  PubMed  Google Scholar 

  61. Brookes PS, Salinas EP, Darley-Usmar K, et al. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem 2000;275(27):20474–20479.

    Article  CAS  PubMed  Google Scholar 

  62. Tejedo J, Bernabe JC, Ramirez R, Sobrino F, Bedoya FJ. NO induces a cGMP-independent release of cytochrome c from mitochondria which precedes caspase 3 activation in insulin producing RINm5F cells. FEBS Lett 1999;459(2):238–243.

    Article  CAS  PubMed  Google Scholar 

  63. Huwiler A, Pfeilschifter J, van den Bosch H. Nitric oxide donors induce stress signaling via ceramide formation in rat renal mesangial cells. J Biol Chem 1999;274(11):7190–7195.

    Article  CAS  PubMed  Google Scholar 

  64. Takeda Y, Tashima M, Takahashi A, Uchiyama T, Okazaki T. Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J Biol Chem 1999;274(15):10654–10660.

    Article  CAS  PubMed  Google Scholar 

  65. Di Nardo A, Benassi L, Magnoni C, Cossarizza A, Seidenari S, Giannetti A. Ceramide 2 (N-acetyl sphingosine) is associated with reduction in Bcl-2 protein levels by Western blotting and with apoptosis in cultured human keratinocytes. Br J Dermatol 2000;143(3):491–497.

    PubMed  Google Scholar 

  66. Li J, Bombeck CA, Yang S, Kim YM, Billiar TR. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem 1999;274(24):17325–17333.

    Article  CAS  PubMed  Google Scholar 

  67. Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death. J Clin Invest 1995;96(5):2247–2259.

    CAS  PubMed  Google Scholar 

  68. Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999;84(3):253–256.

    CAS  PubMed  Google Scholar 

  69. Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 1997;240(2):419–424.

    Article  CAS  PubMed  Google Scholar 

  70. Rossig L, Fichtlscherer B, Breitschopf K, et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 1999;274(11):6823–6826.

    Article  CAS  PubMed  Google Scholar 

  71. Dimmeler S, Haendeler J, Sause A, Zeiher AM. Nitric oxide inhibits APO-1/Fas-mediated cell death. Cell Growth Differ 1998;9(5):415–422.

    CAS  PubMed  Google Scholar 

  72. Genaro AM, Hortelano S, Alvarez A, Martinez C, Bosca L. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest 1995;95(4):1884–1890.

    CAS  PubMed  Google Scholar 

  73. Kim YM, de Vera ME, Watkins SC, Billiar TR. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 1997;272(2):1402–1411.

    CAS  PubMed  Google Scholar 

  74. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 1993;90(21):9813–9817.

    CAS  PubMed  Google Scholar 

  75. Rabkin SW, Kong JY. Nitroprusside induces cardiomyocyte death: Interaction with hydrogen peroxide. Am J Physiol Heart Circ Physiol 2000;279(6):H3089–H3100.

    CAS  PubMed  Google Scholar 

  76. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999;84(1):21–33.

    CAS  PubMed  Google Scholar 

  77. Song W, Lu X, Feng Q. Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 2000;45(3):595–602.

    Article  CAS  PubMed  Google Scholar 

  78. Weiland U, Haendeler J, Ihling C, et al. Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway. Cardiovasc Res 2000;45(3):671–678.

    Article  CAS  PubMed  Google Scholar 

  79. Kawaguchi H, Shin WS, Wang Y, et al. In vivo gene transfection of human endothelial cell nitric oxide synthase in cardiomyocytes causes apoptosis-like cell death. Identification using Sendai virus-coated liposomes. Circulation 1997;95(10):2441–2447.

    CAS  PubMed  Google Scholar 

  80. Lefer DJ, Nakanishi K, Johnston WE, Vinten-Johansen J. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs. Circulation 1993;88(5 Pt 1):2337–2350.

    CAS  PubMed  Google Scholar 

  81. Czarnowska E, Kurzelewski M, Beresewicz A, Karczmarewicz E. The role of endogenous nitric oxide in inhibition of ischemia/reperfusion-induced cardiomyocyte apoptosis. Folia Histochem. Cytobiol 2001;39(2):179–180.

    CAS  PubMed  Google Scholar 

  82. Rakhit RD, Mojet MH, Marber MS, Duchen MR. Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes. Circulation 2001;103(21):2617–2623.

    CAS  PubMed  Google Scholar 

  83. Koglin J, Glysing-Jensen T, Mudgett JS, Russell ME. NOS2 mediates opposing effects in models of acute and chronic cardiac rejection: Insights from NOS2-knockout mice. Am J Pathol 1998;153(5):1371–1376.

    CAS  PubMed  Google Scholar 

  84. Koglin J, Granville DJ, Glysing-Jensen T, et al. Attenuated acute cardiac rejection in NOS2-/-recipients correlates with reduced apoptosis. Circulation 1999;99(6):836–842.

    CAS  PubMed  Google Scholar 

  85. Szabolcs MJ, Ma N, Athan E, et al. Acute cardiac allograft rejection in nitric oxide synthase-2(-/-) and nitric oxide synthase-2(+/+) mice: Effects of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation 2001;103(20):2514–2520.

    CAS  PubMed  Google Scholar 

  86. Scherrer-Crosbie M, Ullrich R, Bloch KD, et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001;104(11):1286–1291.

    CAS  PubMed  Google Scholar 

  87. Feng Q, Lu X, Jones DL, Shen J, Arnold JM. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 2001;104(6):700–704.

    CAS  PubMed  Google Scholar 

  88. Sam F, Sawyer DB, Xie Z, et al. Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 2001;89(4):351–356.

    CAS  PubMed  Google Scholar 

  89. Leist M, Single B, Naumann H, Fava E, Simon B, Kuhne S, Nicotera P. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 1999;249:396–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Oyama, Ji., Frantz, S., Blais, C., Kelly, R.A., Bourcier, T. (2004). Nitric Oxide, Cell Death, and Heart Failure. In: Jugdutt, B.I. (eds) The Role of Nitric Oxide in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7960-5_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7960-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7736-4

  • Online ISBN: 978-1-4020-7960-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics