Skip to main content

On the Functional Equation P(F)=Q(G)

  • Chapter

Part of the Advances in Complex Analysis and Its Applications book series (ACAA,volume 3)

Abstract

We prove that for a generic pair (P, Q) of polynomials P of degree n and Q of degree m, where m, n are satisfying some conditions, P(f)=Q(g) for meromorphic functions f,g implies f=const, g=const. We also give another proof of the statement saying that a generic polynomial of degree at least 5 is a uniqueness polynomial for meromorphic functions.

Mathematics Subject Classification 2000

  • 32H20
  • 30D35

Key words and phrases

  • functional equation
  • uniqueness polynomial
  • meromorphic function
  • unique range set

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-7951-6_10
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-7951-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beauville A., Surfaces algébriques complexes, Astérisque 54, 1978.

    Google Scholar 

  2. Fujimoto H., On uniqueness of meromorphic functions sharing finite sets, Preprint.

    Google Scholar 

  3. Gross F., Factorization of meromorphic functions and some open problems, Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 976), pp. 51–67, Lecture Notes in Math., Vol. 599, Springer, Berlin, 1977.

    Google Scholar 

  4. Hovanskii A.G., Newton polyhedra and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51–61. (Russian)

    MATH  MathSciNet  Google Scholar 

  5. Hua X.H. and Yang C.C., Uniqueness problems of entire and meromorphic functions, Bull. Hong Kong Math. Soc. 1 (1997), no. 2, 289–300.

    MathSciNet  Google Scholar 

  6. Li P. and Yang C.C., Some further results on the unique range sets of meromorphic functions, Kodai Math. J. 18, 1995, 437–450.

    MathSciNet  Google Scholar 

  7. Milnor J., Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968.

    Google Scholar 

  8. Shiffman B., Uniqueness of entire and meromorphic functions sharing finite sets, Preprint.

    Google Scholar 

  9. Yang C.C. and Hua X.H., Unique polynomials of entire and meromorphic functions, Mat. Fiz. Anal. Geom. 4 (1997), no. 3, 391–398.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ha, H.K., Yang, C.C. (2004). On the Functional Equation P(F)=Q(G). In: Barsegian, G., Laine, I., Yang, C.C. (eds) Value Distribution Theory and Related Topics. Advances in Complex Analysis and Its Applications, vol 3. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7951-6_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7951-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7950-4

  • Online ISBN: 978-1-4020-7951-1

  • eBook Packages: Springer Book Archive