Skip to main content

Relevance of Pathologic Classifications and Diagnosis of Acute Myeloid Leukemia to Clinical Trials and Clinical Practice

  • Chapter
Hematopathology in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 121))

Summary

Many new insights into the diagnosis, pathogenesis, clinical manifestation, treatment and prognosis of patients with AML reflect the heterogeneity of the disease. The initial descriptions of the various subtypes of AML, established by the FAB classification, were based on morphology and cytochemical stains. Although morphology remains the foundation for the diagnosis, additional diagnostic studies including immunophenotyping, cytogenetic evaluation, and molecular geneticstudies have become critical, and in some specific cases, mandatory, complementary tools. Several specific subtypes of AML are now treated with directed or targeted therapy. Acute promyelocytic leukemia is currently the only example of a subtype of AML to which specific therapy targeted to a molecular genetic abnormality is available and this subtype now is highly curable. Future studies will address newly identified prognostic factors and gene mutations such as FLT3, 115–122 Wilm’s tumor (WTI), 123,124 and CEBPA125 which will enable the further pathologic classification of patients with AML. Finally, microarray analysis will likely identify genes critically involved in the pathogenesis of specific pathologic subtypes.125

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett J. Proposals for the Classification of the Acute Leukemias. Br J Haematol 1976; 33:451–458.

    CAS  PubMed  Google Scholar 

  2. Head D, Savage R, Cerezo L, et al: Reproducibility of the French-American-British Classification of Acute Leukemia: The Southwest Oncology Group Experience. Am J Hematol 1985; 18:47–57.

    CAS  PubMed  Google Scholar 

  3. Burnett A. Introduction: Modern management of acute myeloid leukemia. Seminars in Hematology 2001; 38:1–2.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett J, Young M, Andersen J, et al. Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience. Cancer 1997; 80:2205–2209.

    CAS  PubMed  Google Scholar 

  5. Rowe J. Treatment of acute myelogenous leukemia in older adults. Leukemia 2000; 14:480–487.

    CAS  PubMed  Google Scholar 

  6. McMullin M, Mackenzie G. Survival from acute myeloid leukaemia in patients over 55 years of age in Northern Ireland: a discrete population. Hematology 2001; 6:103–110.

    Google Scholar 

  7. Dalley C, Rohatiner A, Bradburn M, et al. Acute myelogenous leukaemia in patients 60 years and older: A retrospective analysis from St. Bartholomew’s Hospital 1969–1999. Hematology 2001; 6:163–75.

    Google Scholar 

  8. Head D. Revised classification of acute myeloid leukemia. Leukemia 1996; 10:1826–1831.

    CAS  PubMed  Google Scholar 

  9. Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. in: Jaffe ES, Harris NL, Stein H, Vardiman JW eds: World Health Organization Classification of Tunours. Tumours of Haematopoietic and Lymphoid Tissues. London, IARC Press, 2001: pp 75–107.

    Google Scholar 

  10. Bennett J, Catovsky D, Daniel M, et al. Proposal for the recognition of minimally differentiated acute myeloid leukemia (AML-MO). Br J Haematol 1991; 78:325–329.

    CAS  PubMed  Google Scholar 

  11. Matsuo T, Bennett J. Acute leukemia of megakaryocyte lineage (M7). Cancer Genet Cytogenet 1988; 34:1–3.

    Article  CAS  PubMed  Google Scholar 

  12. Vardiman J, Harris N, Brunning R. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100:2292–2302.

    Article  CAS  PubMed  Google Scholar 

  13. Estey E, Thall P, Beran M, et al. Effect of diagnosis (RAEB, RAEB-t or AML) on outcome of AML-type chemotherapy. Blood 1997; 90:2969–2977.

    CAS  PubMed  Google Scholar 

  14. Cheson B, Cassileth P, Head D, et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990; 8:813–819.

    CAS  PubMed  Google Scholar 

  15. Cheson B, Bennett J, Kopecky K, et al. Recommendations of the international working group to standardize response criteria and treatment outcomes for therapeutic trials in acute myeloid leukemia. J Clin Oncol 2003; 21:4642–4649.

    Article  PubMed  Google Scholar 

  16. Shimada H, Ichikawa H, Nakamura S, et al. Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS 11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood 2000; 96:655–662.

    CAS  PubMed  Google Scholar 

  17. Wang J, Wang M, Johnson M. Transformation properties of the ETO gene, fusion partner in t(8;21) leukemias. Cancer Res 1997; 57:2951–2955.

    CAS  PubMed  Google Scholar 

  18. Shimada H, Ichikawa H, Ohki M. Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 2002; 16:874–885.

    Article  CAS  PubMed  Google Scholar 

  19. Nishii K, Usui E, Katayama N, et al. Characteristics of t(8;21) acute myeloid leukemia (AML) with additional chromosomal abnormality: concomitant trisomy 4 may constitute a distinctive subtype of t(8;21) AML. Leukemia 2003; 17:731–737.

    Article  CAS  PubMed  Google Scholar 

  20. Nucifora G, Rowley J. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. 1995; Blood 86:1–14.

    CAS  PubMed  Google Scholar 

  21. Slovak M, Kopecky K, Cassileth P. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 2000; 96:4075–4083.

    CAS  PubMed  Google Scholar 

  22. Dastugue N, Payen C, Lafage-Pochitaloff M, et al. Prognostic significance of karyotype in de novo acute myeloid leukemia. Leukemia 1995; 9:1411–1498.

    Google Scholar 

  23. Porwit-MacDonald A, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21). Blood 1996; 87:1162–1169.

    CAS  PubMed  Google Scholar 

  24. Baer M, Stewart C, Lawrence D, et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 1997; 90:1643–1648.

    CAS  PubMed  Google Scholar 

  25. Byrd J, Weiss R, Arthur D, et al. Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t(8;21)(q22;q22): results from Cancer and Leukemia Group B 8461. J Clin Oncol 1997; 15:466–475.

    CAS  PubMed  Google Scholar 

  26. Byrd J, Edenfield W, Shields D, et al. Extramedullary myeloid tumors in acute nonlymphocytic leukemia: a clinical review. J of Clin Oncol 1995; 13:1800–1816.

    CAS  Google Scholar 

  27. Raspadori D, Damiani D, Lenoci M, et al. CD56 antigenic expression in acute myeloid leuiemia identifies patients with poor clinical prognosis. Leukemia 2001; 15: 1161–1164.

    Article  CAS  PubMed  Google Scholar 

  28. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  29. Byrd J, Mrozek K, Dodge R, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  30. Bloomfield C, Lawrence D, Byrd J, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 1998; 58: 4173–4179.

    CAS  PubMed  Google Scholar 

  31. Byrd J, Dodge R, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol 1999; 17(12): 3767–75.

    CAS  PubMed  Google Scholar 

  32. Palmieri S, Sebastio L, Mele G, et al. High-dose cytarabine as consolidation treatment for patients with acute myeloid leukemia with t(8;21). Leuk Res 2002; 26: 539–543.

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen S, Leblanc T, Fenaux P, et al. A white blood cell index as a main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood 2002; 99: 3517–3523.

    CAS  PubMed  Google Scholar 

  34. Liu P, Tarle S, Hajra A, et al. Fusion between transcription factor CBFbeta/PEBP2beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    CAS  PubMed  Google Scholar 

  35. Shurtleff S, Meyers S, Hiebert S, et al. Heterogeneity in CBFB/MYH11 fusion messages encoded by the inv(16)(p13;q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 1995; 85: 3695–3703.

    CAS  PubMed  Google Scholar 

  36. Costello R, Sainty D, Lecine P, et al. Detection of CBFbeta/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia 1997; 11: 644–650.

    Article  CAS  PubMed  Google Scholar 

  37. Langabeer S, Walker H, Gale R, et al. Frequency of CBFbeta/MYH11 fusion transcripts in patients entered into the UK MRC AML trials. Br J Haematol 1997; 96: 736–739.

    Article  CAS  PubMed  Google Scholar 

  38. Poirel H, Radford-Weiss I, Rack K, et al. Detection of the chromosome 16 CBFbeta-MYH11 fusion transcript in myelomonocytic leukemias. Blood 1995; 85: 1313–1322.

    CAS  PubMed  Google Scholar 

  39. Ohyashi K, Oyashi J, Iwabuchi A, et al. Central nervous system involvement in acute nonlymphocytic leukemia with inv(16)(p13q22). Leukemia 1988; 2: 398–399.

    Google Scholar 

  40. Holmes R, Keating M, Cork A, et al. A unique pattern of central nervous system leukemia in acute myelomonocytic leukemia associated with inv(16)(p13q22). Blood 1985; 65: 1071–1078.

    CAS  PubMed  Google Scholar 

  41. Dechary D, Bernard P, Lacome F, et al. Acute myeloid leukemia with hypereosinophilia and chromosome 16 anomaly. Cancer Genet Cytogenet 1986; 20: 241–246.

    Google Scholar 

  42. Larson R, Williams S, Le Beau M, et al. Acute myelomonocytic leukemia with hypereosinophilia and inv(16) or t(16;16) has a favorable prognosis. Blood 1986; 68: 1242–1249.

    CAS  PubMed  Google Scholar 

  43. Monahan B, Rector J, Liu P, et al. Clinical aspects of expression of inversion 16 chromosomal fusion trancript CBFB/MYH11 in acute myelogenous leukemia subtype M1 with abnormal bone marrow eosiniphilia. Leukemia 1996; 10: 1653–1675.

    CAS  PubMed  Google Scholar 

  44. Razzouk B, Raimondi S, Srivastava D, et al. Impact of treatment on the outcome of acute meyloid leukemia with inversion 16: a single institution’s experience. Leukemia 2001; 15: 1326–1330.

    Article  CAS  PubMed  Google Scholar 

  45. Buonamici S, Ottaviani E, Testoni N, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 2002; 99: 443–449.

    Article  CAS  PubMed  Google Scholar 

  46. Jaeger V, Kainz B. Monitoring minimal residual disease in AML: the right time for real time. Ann Hematol 2003; 82: 139–147.

    CAS  PubMed  Google Scholar 

  47. Krauter J, Gorlich K, Ottmann O, et al. Prognostic value of minimal residual disease quantification by real-time reverse trascriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol 2003; 21: 4413–4422.

    Article  CAS  PubMed  Google Scholar 

  48. Varella-Garcia M, Hogan C, Odom L, et al. Minimal residual disease (MRD) in remission t (8;21) AML and in vivo differentiation detected by FISH and CD34+ cell sorting. Leukemia 2001; 15: 1408–1414.

    Article  CAS  PubMed  Google Scholar 

  49. Miyamoto T, Weissman I, Akashi K, et al. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    CAS  PubMed  Google Scholar 

  50. Gallagher R, Yeap B, Bi W. Quantitative real-time RT-PCR analysis of PML-RARalpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 2003; 101: 2521–2528.

    CAS  PubMed  Google Scholar 

  51. San Miguel J, Vidriales M, Lopez-Berges C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 2001; 98: 1746–1751.

    Article  CAS  PubMed  Google Scholar 

  52. San Miguel J, Martinez A, Macedo A, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997; 90: 2455–2470.

    Google Scholar 

  53. Grignani F, Fagioli M, Alcalay M, et al. Acute promyelocytic leukemia: from genetics to treatment. Blood 1994; 83: 10–25.

    CAS  PubMed  Google Scholar 

  54. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptoralpha recruit histone deacetylase in promyelocytic leukemia. Nature 1998; 391: 815–818.

    CAS  PubMed  Google Scholar 

  55. Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J 2001; 20: 6969–6978.

    Article  CAS  PubMed  Google Scholar 

  56. Maeda T, Towatori M, Kosugi H, et al. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 2000; 96: 3847–3856.

    CAS  PubMed  Google Scholar 

  57. Kitamura K, Hoshi S, Koike M, et al. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br J Haematol 2000; 108: 696–702.

    Article  CAS  PubMed  Google Scholar 

  58. O’Connor S, Evans P, Morgan G, et al. Diagnostic approaches to acute promyelocytic leukaemia. Leuk Lymphoma 1999; 33: 53–63.

    Google Scholar 

  59. Sainty D, Liso V, Cantu-Rajnoldi A, et al. A new morphologic classification system for acute promyeloctyic leuekmia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood 2000; 96: 1287–1296.

    CAS  PubMed  Google Scholar 

  60. Liu T-X, Zhang J-W, Tao J, et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 2000; 96: 1496–1504.

    CAS  PubMed  Google Scholar 

  61. Lo Coco F, Avvisati G, Diverio D, et al. Rearrangements of the RARalpha gene in acute promyelocytic leukemia: correlations with morphology and immunophenotype. Br J Haematol 1991; 78: 494–499.

    PubMed  Google Scholar 

  62. Erber W, Asbahr H, Rule S, et al. Unique immunophenotype of acute promyelocytic leukemia as defined by CD9 and CD68 antibodies. Br J Haematol 1994; 88: 101–104.

    CAS  PubMed  Google Scholar 

  63. Paietta E, Andersen J, Gallagher R, et al. The immunophenotype of acute promyelocytic leukemia (APL): an ECOG study. Leukemia 1994; 7: 1108–1112.

    Google Scholar 

  64. Guglielmi C, Martelli M, Diverio D, et al. Clinical and biological relevance of immunophenotype in acute promyelocytic leukemia. Br J Haematol 1998; 102: 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  65. Bernard J, Weil M, Boiron M, et al. Acute promyelocytic leukemia: results of treatment by daunorubicin. Blood 1973; 41: 489–496.

    CAS  PubMed  Google Scholar 

  66. Paietta E, Andersen J, Racevskis J, et al. Significantly lower P-glycoprotein expression in acute promyelocytic leukemia than in other types of acute myeloid leukemia: immunological, molecular and functional analyses. Leukemia 1994; 8: 968–973.

    CAS  PubMed  Google Scholar 

  67. Drach D, Zhao S, Drach J, et al. Low incidence of MDR1 expression in acute promyelocytic leukemia. Br J Haematol 1995; 90: 369–374.

    CAS  PubMed  Google Scholar 

  68. Claxton D, Reading C, Nagarian L, et al. Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood 1992 80: 582–586.

    CAS  PubMed  Google Scholar 

  69. Biondi A, Luciano A, Bassan R, et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia 1995; 9: 1461–1466.

    CAS  PubMed  Google Scholar 

  70. Li S-W, Tang D, Ahrens K, et al. All-trans-retinoic acid includes CD52 expression in acute promyelocytic leukemia. Blood 2003; 101: 1977–1983.

    CAS  PubMed  Google Scholar 

  71. Murray C, Estey E, Paietta E, et al. CD56 expression in acute promyelocytic leukemia: A possible indicator of poor treatment outcome. J Clin Oncol 1999; 17: 293–297.

    CAS  PubMed  Google Scholar 

  72. Ferrara F, Morabito F, Martino B, et al. CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous ATRA and chemotherapy. J Clin Oncol 2000; 18: 1295–1300.

    CAS  PubMed  Google Scholar 

  73. Scott A, Head D, Kopecky K, et al. HLA-DR-CD33+, CD56+, CD16-myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute myeloid leukemia-M3. Blood 1994; 84: 244–255.

    CAS  PubMed  Google Scholar 

  74. Paietta E, Gallagher R, Wiernik P. Myeloid/natural killer cell acute leukemia: a previously unrecognized form of acute leukemia potentially misdiagnosed as FAB-M3 acute myeloid leukemia. Blood 1994; 84(8): 2824–2825.

    CAS  PubMed  Google Scholar 

  75. Tallman M, Hakimian D, Kwaan H, et al. New insights into the pathogenesis of coagulation dysfunction in acute promyelocytic leukemia. Leuk Lymphoma 1993; 11: 27–36.

    Article  CAS  PubMed  Google Scholar 

  76. Barbui T, Falanga A. The management of bleeding and thrombosis in leukemia, in Henderson E, Greaves M (eds): Leukemia. Philadelphia, 1996, pp 291

    Google Scholar 

  77. Di Bona E, Avvisati G, Castaman G, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukemia. Br J Haematol 2000; 108: 689–695.

    PubMed  Google Scholar 

  78. Falanga A, Iacoviello L, Evangelista V, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variable in patients with acute promyelocytic leukemia administered all-trans-retinoic acid. Blood 1995; 86: 1072–1081.

    CAS  PubMed  Google Scholar 

  79. Dombret H, Scrobohaci M, Ghorra P, et al. Coagulation disorders associated with acute promyelocytic leukemia: corrective effect of all-trans retinoic acid treatment. Leukemia 1993; 7:2–9.

    CAS  PubMed  Google Scholar 

  80. Barbui T, Finazzi G, Falanga A. The impact of all trans-retinoic acid on the coagulopathy of acute promyelocytic leukemia. Blood 1998; 91:3093–3102.

    CAS  PubMed  Google Scholar 

  81. Tallman M, Nabhan C, Feusner J, et al. Acute promyelocytic leukemia: evolving therapeutic strategies. Blood 2002; 99:759–767.

    Article  CAS  PubMed  Google Scholar 

  82. Fenaux P, Chastang C, Chevret S, et al. A randomized comparison of all-trans retinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Blood 1999; 94:1192–1200.

    CAS  PubMed  Google Scholar 

  83. Tallman M, Andersen J, Schiffer C, et al. All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med 1997; 337:1021–1028.

    Article  CAS  PubMed  Google Scholar 

  84. Warrell R, De The H, Wang Z, et al. Acute promyelocytic leukemia. N Engl J Med 1993; 329:177–189.

    Article  CAS  PubMed  Google Scholar 

  85. Vahdat L, Maslak P, Miller Jr W, et al. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: impact of leukocytosis, low-dose chemotherapy, PMN/RARa isoform, and CD 13 expression in patients treated with all-trans retinoic acid. 1994; Blood 84:3843–3849.

    CAS  PubMed  Google Scholar 

  86. De Botton S, Dombret H, Sanz M, et al. Incidence, clinical features, and outcome of all-trans retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. Blood 1998; 92:2712–2718.

    PubMed  Google Scholar 

  87. Tallman M, Anderson A, Schiffer C, et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood 2000; 95:90–94.

    CAS  PubMed  Google Scholar 

  88. Sanz M, Martin G, Rayon C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARa-positive acute promyelocytic leukemia. Blood 1999; 94:3015–3021.

    CAS  PubMed  Google Scholar 

  89. Sanz M, LoCoco F, Martin G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 2000; 96:1247–1253.

    CAS  PubMed  Google Scholar 

  90. Estey E, Thall P, Pierce S, et al. Treatment of newly diagnosed acute promyelocytic leukemia without cytarabine. J Clin Oncol 1997; 15:483–490.

    CAS  PubMed  Google Scholar 

  91. Bocci G, Nicolaou K, Kerbel R, et al. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 2002; 62:6938–6943.

    CAS  PubMed  Google Scholar 

  92. Kini A, Peterson L, Tallman M, et al. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood 2001; 97:3919–3924.

    Article  CAS  PubMed  Google Scholar 

  93. Avvisati G, Petti M, Lo Coco F, et al: AIDA: the Italian way of treating acute promyelocytic leukemia: The final act (abstr). Blood 2003; 102:487.

    Google Scholar 

  94. Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RAR alphapositive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood 1997; 90:1014–1021.

    CAS  PubMed  Google Scholar 

  95. Tallman M, Andersen J, Schiffer C, et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup Protocol. Blood 2002; 100:4298–4302.

    Article  CAS  PubMed  Google Scholar 

  96. Lo Coco F, Diverio D, Falini B, et al. Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 1999; 94:12–22.

    PubMed  Google Scholar 

  97. Estey E, Giles F, Beran M, et al. Experience with gemtuzumab ozogamicin (“Mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002; 99:4222–4224.

    CAS  PubMed  Google Scholar 

  98. Shen Z-X, Chen G, Ni J, et al. Use of arsenic trioxide (As2o3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89:3354–3360.

    CAS  PubMed  Google Scholar 

  99. Soignet S, Maslak P, Wang Z, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339:1341–1348.

    Article  CAS  PubMed  Google Scholar 

  100. Soignet S, Frankel S, Douer D, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 2001; 19:3852–3860.

    CAS  PubMed  Google Scholar 

  101. Niu C, Yan H, Yu T, et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 1999; 94:3315–3324.

    CAS  PubMed  Google Scholar 

  102. Meloni G, Diverio D, Vignetti G, et al. Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RAR alpha fusion gene. Blood 1997; 90:1321–1325.

    CAS  PubMed  Google Scholar 

  103. Lo Coco F, Romano A, Mengarelli A, et al. Allogeneic stem cell transplantation for advanced acute promyelocytic leukemia results in patients with molecularly persistent disease. Leukemia 2003; 17:1930–1933.

    Google Scholar 

  104. Solary E, Casasnovas R-O, Campos L, et al. Surface markers in adult acute myeloblastic leukemia: Correlation of CD19+, CD34+ and CD14+/DR — phenotypes with shorter survival. Leukemia 1992; 6:393–399.

    CAS  PubMed  Google Scholar 

  105. Dinndorf P, Andrews R, Benjamin D, et al. Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 1986; 67:1048–1053.

    CAS  PubMed  Google Scholar 

  106. Griffin J, Linch D, Shabbath K, et al. A monoclonal antibody reactive with normal and leukemic human meyloid progenitor cells. Leuk Res 1984. 8:521–534.

    Article  CAS  PubMed  Google Scholar 

  107. van der Velden V, te Marvelde J, Hoogeveen P, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001; 97:3197–3204.

    Google Scholar 

  108. Sievers E, Appelbaum F, Spielberger R, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999; 93:3678–3684.

    CAS  PubMed  Google Scholar 

  109. Sievers E, Larson R, Stadtmauer E, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001; 19:3244–3254.

    CAS  PubMed  Google Scholar 

  110. Giles F, Kantarjian H, Kornlau S, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venocclusive disease in patients who have not received stem cell transplantation. Cancer 2001; 92:406–413.

    Article  CAS  PubMed  Google Scholar 

  111. Wadleigh M, Richardson P, Zahrieh D, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003; 102:1578–1582.

    Article  CAS  PubMed  Google Scholar 

  112. Rajvanshi P, Shulman H, Sievers E, et al. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002; 99:2310–2314.

    Article  CAS  PubMed  Google Scholar 

  113. Kell W, Burnett A, Chopra R, et al. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 2003; 102:4277–4283.

    Article  CAS  PubMed  Google Scholar 

  114. De Angelo D, Stone R, Durant S, et al. Gemtuzumab ozogamicin (Mylotarg) in combination with induction chemotherapy for the treatment of patients with de novo acute myeloid leukemia: Two age-specific phase 2 trials (abstr). Blood 2003; 102:100a.

    Google Scholar 

  115. Rombouts W, Blokland I, Lowenberg B, et al. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14:675–683.

    CAS  PubMed  Google Scholar 

  116. Kottaridis P, Gale R, Frew M, et al. The presence of FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98:1752–1759.

    Article  CAS  PubMed  Google Scholar 

  117. Meshinchi S, Goods W, Stirewalt D, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97:89–94.

    Article  CAS  PubMed  Google Scholar 

  118. Rombouts W, Lowenberg B, van Putten W, et al. Improved prognostic significance of cytokine-induced proliferation in vitro in patients with de novo acute myeloid leukemia of intermediate risk: impact of internal tandem duplications in the Flt3 gene. Leukemia 2001; 16:1046–1053.

    Google Scholar 

  119. Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100:59–66.

    Article  CAS  PubMed  Google Scholar 

  120. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99:4326–4335.

    Article  CAS  PubMed  Google Scholar 

  121. Shih L, Huang C, Wu J, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100:2387–2392.

    Article  CAS  PubMed  Google Scholar 

  122. Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100:2717–2723.

    Article  CAS  PubMed  Google Scholar 

  123. Schmid D, Heinze G, Linnerth B, et al. Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia 1997; 11:639–643.

    Article  CAS  PubMed  Google Scholar 

  124. King-Underwood L, Pritchard-Jones K. Wilms’ Tumor (WTI) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 1998; 91:2961–2968.

    CAS  PubMed  Google Scholar 

  125. Okutsu J, Tsunoda T, Kaneta Y, et al. Prediction of chemosensitivity for patients with acute myeloid leukemia, according to expression levels of 28 genes selected by genome-wide complementary DNA microarray analysis. Mol Cancer Therapeutics 2002; 1:1035–1042.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tallman, M.S. (2004). Relevance of Pathologic Classifications and Diagnosis of Acute Myeloid Leukemia to Clinical Trials and Clinical Practice. In: Finn, W.G., Peterson, L.C. (eds) Hematopathology in Oncology. Cancer Treatment and Research, vol 121. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7920-6_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7920-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7919-1

  • Online ISBN: 978-1-4020-7920-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics