Skip to main content

Oxygen Sensing, Oxygen-sensitive Ion Channels and Mitochondrial Function in Arterial Chemoreceptors

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 115 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer SL, Huang J, Henry T, Peterson D, and Weir EK. A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 1993; 73: 1100–1112.

    CAS  PubMed  Google Scholar 

  2. Biscoe TJ and Duchen MR. Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J. Physiol. 1990; 42: 39–59.

    Google Scholar 

  3. Buckler KJ. A novel oxygen-sensitive potassium current in rat carotid body type I cells. J. Physiol. 1997; 498: 649–662.

    CAS  PubMed  Google Scholar 

  4. Buckler KJ and Vaughan-Jones RD. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J. Physiol. 1994; 476: 423–428.

    CAS  PubMed  Google Scholar 

  5. Carpenter E, Hatton CJ, and Peers C. Effects of hypoxia and dithionite on catecholamine release from isolated type I cells of the rat carotid body. J. Physiol. 2000; 523: 719–729.

    Article  CAS  PubMed  Google Scholar 

  6. Degli Esposti M. Inhibitors of the NADH-ubiquinone reductase: an overview. Biochem, Biophys. Acta. 1998; 1364: 222–235.

    CAS  Google Scholar 

  7. Delpiano MA and Hescheler J. Evidence for a PO2-sensitive K+ channel in the type-I cell of the rabbit carotid body. FEBS Lett. 1989; 249: 195–198.

    Article  CAS  PubMed  Google Scholar 

  8. Doyle TP and Donnelly DF. Effect of Na+ and K+ channel blockade on baseline and anoxia induced catecholamine release from rat carotid body. J. Appl. Physiol. 1994; 77: 2606–2611.

    CAS  PubMed  Google Scholar 

  9. Duchen MR, Caddy KWT, Kirby GC, Patterson DL, Ponte J, and Biscoe TJ. Biophysical studies of the cellular elements ofthe rabbit carotid body. Neuroscience. 1988; 26: 291–311.

    Article  CAS  PubMed  Google Scholar 

  10. Gálvez A, Gimenez-Gallego G, Reuben JP, Roy-Contancin L, Feigenbaum P, Kaczorowski GJ, and García ML. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem. 1990; 265: 11083–11090.

    PubMed  Google Scholar 

  11. Ganfornina MD and López-Barneo J. Single K+ channels in membrane patches of arterial chemoreceptor cells are modulated by O2 tension. Proc. Natl. Acad. Sci. USA. 1991; 88: 2927–2930.

    CAS  PubMed  Google Scholar 

  12. Ganfornina MD and López-Barneo J. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J. Gen. Physiol. 1992; 100: 401–426.

    CAS  PubMed  Google Scholar 

  13. Hescheler J, Delpiano MA, Acker H, and Pietruschka F. Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res. 1989; 486: 79–88.

    Article  CAS  PubMed  Google Scholar 

  14. Higgins DS and Greenamyre JT. [3H]Dihydrorotenone binding to NADH: Ubiquinone reductase (complex I) of the electron transport chain: An autoradiographic study. J. Neurosci. 1996; 16: 3807–3816.

    CAS  PubMed  Google Scholar 

  15. Inoue M, Fujishiro N, Imanaga I, and Sakamoto Y. Role of ATP decrease in secretion induced by mitochondrial dysfunction in guinea-pig adrenal chromaffin cells. J. Physiol. 2002; 539: 145–155.

    Article  CAS  PubMed  Google Scholar 

  16. Lahiri S, Roy A, Rozanov C, and Mokashi A. K+Ca-current modulated by PO2 in type I cells in rat carotid body is not a chemosensor. Brain Res. 1998; 794: 162–165.

    Article  CAS  PubMed  Google Scholar 

  17. Leach RM, Hill HM, Snetkov VA, Robertson TP, and Ward JPT. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J. Physiol. 2001; 536: 211–224.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis A, Peers C, Ashford ML, and Kemp PJ. Hypoxia inhibits human recombinant large conductance, Ca2+-activated K+ (maxi-K) channels by a mechanism which is membrane delimited and Ca2+ sensitive. J. Physiol. 2002; 540: 771–780.

    Article  CAS  PubMed  Google Scholar 

  19. López-Barneo J. Oxygen-sensitive ion channels: how ubiquitous are they? Trends Neurosci. 1994; 17: 133–135.

    Article  PubMed  Google Scholar 

  20. López-Barneo J, López-López JR, Ureña J, and González C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science. 1988; 242: 580–582.

    Google Scholar 

  21. López-Barneo J, Benot AR, and Ureña J. Oxygen sensing and the electrophysiology of arterial chemoreceptor cells. News Physiol. Sci. 1993; 8: 191–195.

    Google Scholar 

  22. López-Barneo J, Pardal R, and Ortega-Sáenz P. Cellular mechanisms of oxygen sensing. Annu. Rev. Physiol. 2001; 63: 259–287.

    PubMed  Google Scholar 

  23. López-López JR, González C, and Pérez-García MT. Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia. J. Physiol. 1997; 499: 429–441.

    PubMed  Google Scholar 

  24. Mills E, and Jöbsis FF. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 1972; 35: 405–428.

    CAS  PubMed  Google Scholar 

  25. Mojet MH, Mills E, and Duchen MR. Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J. Physiol. 1997; 504: 175–189.

    Article  CAS  PubMed  Google Scholar 

  26. Montoro RJ, Ureña J, Fernández-Chacón R, Álvarez de Toledo G, and López-Barneo J. Oxygen sensing by ion channels and chemotransduction in single glomus cells. J. Gen. Physiol. 1996; 107: 133–143.

    Article  CAS  PubMed  Google Scholar 

  27. Mulligan E, Lahiri S, and Storey BT. Carotid body O2 chemoreception and mitochondrial oxydative phosphorylation. J. Appl. Physiol. 1981; 51: 438–446.

    CAS  PubMed  Google Scholar 

  28. Ortega-Sáenz P, Pardal R, García-Fernández M, and López-Barneo J. Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J. Physiol. 2003; 548: 789–900.

    PubMed  Google Scholar 

  29. Osanai S, Buerk DG, Mokashi A, Chugh DK, and Lahiri S. Cat carotid body chemosensory discharge (in vitro) is insensitive to charybdotoxin. Brain Res. 1997; 747: 324–327.

    Article  CAS  PubMed  Google Scholar 

  30. Pardal R, Ludewig U, García-Hirschfeld J, and López-Barneo J. Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc. Natl. Acad. Sci. USA. 2000; 97: 2361–2366.

    Article  CAS  PubMed  Google Scholar 

  31. Pardal R and López-Barneo J. Low glucose-sensing cells in the carotid body. Nature Neurosci. 2002; 5: 197–198.

    Article  CAS  PubMed  Google Scholar 

  32. Pardal R and López-Barneo J. Carotid body thin slices: responses of glomus cells to hypoxia and K+Ca-channel blockers. Respir. Physiol. Neurobiol. 2002; 132: 69–79.

    Article  CAS  PubMed  Google Scholar 

  33. Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci. Lett. 1990; 119: 253–256.

    Article  CAS  PubMed  Google Scholar 

  34. Pérez-García T, López-López JR, Riesco AM, Hoppe UC, Marbán E, González C, and Johns DC. Viral gene transfer of dominant negative Kv4 construct suppresses an O2 sensitive K+ current in chemoreceptor cells. J. Neurosci. 2000; 20: 5689–5695.

    PubMed  Google Scholar 

  35. Riesco-Fagundo AM, Pérez-García MT, González C, and López-López JR. O2 modulates large conductance Ca2+-dependent K+ channels of rat chemoreceptor cells by a membrane-restricted and CO-sensitive mechanism. Circ. Res. 2001; 89: 430–436.

    CAS  PubMed  Google Scholar 

  36. Stea A and Nurse CA. Whole-cell and perforated-patch recordings from O2Ca-sensitive rat carotid body cells grown in short-and long-term culture. Pflügers Arch. 1991; 418: 93–101.

    Article  CAS  PubMed  Google Scholar 

  37. Summers BA, Overholt JL, and Prabhakar NR. Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway. J. Neurophysiol. 2000; 84: 1636–1644.

    CAS  PubMed  Google Scholar 

  38. Thompson RJ and Nurse CA. Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J. Physiol. 1998; 512: 421–434.

    Article  CAS  PubMed  Google Scholar 

  39. Ureña J, Fernández-Chacón R, Benot AR, Álvarez de Toledo G, and López-Barneo J. Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc. Natl. Acad. Sci. USA. 1994; 91: 10208–10211.

    PubMed  Google Scholar 

  40. Vaux EC, Metzen E, Yeates KM, and Ratcliffe PJ. Regulation of hypoxia inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 2001; 98: 296–302.

    Article  CAS  PubMed  Google Scholar 

  41. Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88: 1259–1266.

    CAS  PubMed  Google Scholar 

  42. Wyatt CN and Peers C. Ca2+-activated K+ channels in isolated type I cells of the neonatal rat carotid body. J. Physiol. 1995; 483: 559–565.

    CAS  PubMed  Google Scholar 

  43. Youngson C, Nurse C, Yeger H, and Cutz E. Oxygen sensing in airway chemoreceptors. Nature. 1993; 365: 153–155.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu WH, Conforti L, Czyzyk-Krzesk MF, and Millhorn DE. Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K+ current. Am. J. Physiol. 1996; 271, C658–C665.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

López-Barneo, J., Ortega-Sáenz, B., García-Fernández, M., Pardal, R. (2004). Oxygen Sensing, Oxygen-sensitive Ion Channels and Mitochondrial Function in Arterial Chemoreceptors. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_20

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics