Skip to main content

Redox Oxygen Sensing in Hypoxic Pulmonary Vasoconstriction

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

  • 116 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson JJ, and Salama G. Sulfhydryl oxidation and Ca2+ release from sarcoplasmic reticulum. Mol. Cell. Biochem. 1988; 82:81–84.

    Article  CAS  PubMed  Google Scholar 

  2. Abramson JJ, and Salama G. Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum. J. Bioenerg. Biomembr. 1989; 21:283–294.

    Article  CAS  PubMed  Google Scholar 

  3. Albarwani S, Robertson BE, Nye PC, and Kozlowski RZ. Biophysical properties of Ca2+-and Mg-ATP-activated K+ channels in pulmonary arterial smooth muscle cells isolated from the rat. Pflügers Arch. 1994; 428:446–454.

    Article  CAS  PubMed  Google Scholar 

  4. Archer SL, Huang J, Henry T, Peterson D, and Weir EK. A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 1993; 73:1100–1112.

    CAS  PubMed  Google Scholar 

  5. Archer SL, Huang JM, Reeve HL, Hampl V, Tolarova S, Michelakis E, and Weir EK. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ. Res. 1996; 78:431–442.

    CAS  PubMed  Google Scholar 

  6. Archer SL, Nelson DP, and Weir EK. Detection of activated O2 species in vitro and in rat lungs by chemiluminescence. J. Appl. Physiol. 1989; 67:1912–1921.

    CAS  PubMed  Google Scholar 

  7. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, and Weir EK. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc. Natl. Acad. Sci. U. S. A. 1999; 96:7944–7949.

    Article  CAS  PubMed  Google Scholar 

  8. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, and Hampl V. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J. Clin. Invest. 1998; 101:2319–2330.

    CAS  PubMed  Google Scholar 

  9. Archer SL, Will JA, and Weir EK. Redox status in the control of pulmonary vascular tone. Herz. 1986; 11:127–141.

    CAS  PubMed  Google Scholar 

  10. Berube J, Caouette D, and Daleau P. Hydrogen peroxide modifies the kinetics of HERG channel expressed in a mammalian cell line. J. Pharmacol. Exp. Ther. 2001; 297:96–102.

    CAS  PubMed  Google Scholar 

  11. Boraso A and Williams AJ. Modification of the gating of the cardiac sarcoplasmic reticulum Ca2+-release channel by H2O2 and dithiothreitol. Am. J. Physiol. 1994; 267:H1010–H1016.

    CAS  PubMed  Google Scholar 

  12. Budinger GR, Chandel NS, Shao ZH, Li CQ, Mehmed A, Becker LB, and Schumacker PT. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes. Am. J. Physiol. 1996; 270:L44–L53.

    CAS  PubMed  Google Scholar 

  13. Budinger GR, Duranteau J, Chandel NS, and Schumacker PT. Hibernation during hypoxia in cardiomyocytes. Role of mitochondria as the O2 sensor. J. Biol. Chem. 1998; 273:3330–3336.

    Article  Google Scholar 

  14. Campbell DL, Stamler JS, and Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J. Gen. Physiol. 1996; 108:277–293.

    Article  CAS  PubMed  Google Scholar 

  15. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. U. S. A. 1998; 95:11715–11720.

    Article  CAS  PubMed  Google Scholar 

  16. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, and Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 2000; 275:25130–25138.

    Article  CAS  PubMed  Google Scholar 

  17. Chandel NS, and Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J. Appl. Physiol. 2000; 88:1880–1889.

    CAS  PubMed  Google Scholar 

  18. Chander A, Dhariwal KR, Viswanathan R, and Venkitasubramanian TA. Pyridine nucleotides in lung and liver of hypoxic rats. Life Sci. 1980; 26:1935–1945.

    Article  CAS  PubMed  Google Scholar 

  19. Chiamvimonvat N, O’Rourke B, Kamp TJ, Kallen RG, Hofmann F, Flockerzi V, and Marban E. Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels. Circ. Res. 1995; 76:325–334.

    CAS  PubMed  Google Scholar 

  20. Chung S, Jung W, Uhm DY, Ha TS, and Park CS. Glutathione potentiates cloned rat brain large conductance Ca2+-activated K+ channels (rSlo). Neurosci. Lett. 2002; 318:9–12.

    Article  CAS  PubMed  Google Scholar 

  21. Des Marais DJ. Earth’s early biosphere. Gravit. Space Biol. Bull. 1998; 11:23–30.

    PubMed  Google Scholar 

  22. Dipp M, Nye PC, and Evans AM. Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 281:L318–L325.

    CAS  PubMed  Google Scholar 

  23. Eu JP, Sun J, Xu L, Stamler JS, and Meissner G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell. 2000; 102:499–509.

    Article  CAS  PubMed  Google Scholar 

  24. Evans AM and Dipp M. Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca2+ stores and the endothelium. Respir. Physiol. Neurobiol. 2002; 132:3–15.

    Article  CAS  PubMed  Google Scholar 

  25. Evans AM, Osipenko ON, and Gurney AM. Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells. J. Physiol. 1996; 496:407–420.

    CAS  PubMed  Google Scholar 

  26. Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Varadi G, and Peers C. Modulation of recombinant human cardiac L-type Ca2+ channel α1C subunits by redox agents and hypoxia. J. Physiol. 1999; 514:629–637.

    Article  CAS  PubMed  Google Scholar 

  27. Fearon IM, Randall AD, Perez-Reyes E, and Peers C. Modulation of recombinant T-type Ca2+ channels by hypoxia and glutathione. Pflügers Arch. 2000; 441:181–188.

    Article  CAS  PubMed  Google Scholar 

  28. Feng W, Liu G, Allen PD, and Pessah IN. Transmembrane redox sensor of ryanodine receptor complex. J. Biol. Chem. 2000; 275:35902–35907.

    CAS  PubMed  Google Scholar 

  29. Franco-Obregon A and Lopez-Barneo J. Low PO2 inhibits calcium channel activity in arterial smooth muscle cells. Am. J. Physiol. 1996; 271:H2290–H2299.

    CAS  PubMed  Google Scholar 

  30. Fu XW, Wang D, Nurse CA, Dinauer MC, and Cutz E. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 2000; 97:4374–4379.

    Article  CAS  PubMed  Google Scholar 

  31. Gabig TG, Bearman SI, and Babior BM. Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood. 1979; 53:1133–1139.

    CAS  PubMed  Google Scholar 

  32. Gong L, Gao TM, Huang H, and Tong Z. Redox modulation of large conductance calcium-activated potassium channels in CA1 pyramidal neurons from adult rat hippocampus. Neurosci. Lett. 2000; 286-191-194.

    Google Scholar 

  33. Harder DR, Madden JA, and Dawson C. Hypoxic induction of Ca2+-dependent action potentials in small pulmonary arteries of the cat. J. Appl. Physiol. 1985; 59:1389–1393.

    CAS  PubMed  Google Scholar 

  34. Jin N, Packer CS, and Rhoades RA. Pulmonary arterial hypoxic contraction: signal transduction. Am. J. Physiol. 1992; 263:L73–L78.

    CAS  PubMed  Google Scholar 

  35. Kaplin AI, Snyder SH, and Linden DJ. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. J. Neurosci. 1996; 16:2002–2011.

    CAS  PubMed  Google Scholar 

  36. Kato M, and Staub NC. Response of small pulmonaryarteries to unilobar hypoxia and hypercapnia. Circ. Res. 1966; 19:426–440.

    CAS  PubMed  Google Scholar 

  37. Killilea DW, Hester R, Balczon R, Babal P, and Gillespie MN. Free radical production in hypoxic pulmonary artery smooth muscle cells. Am. J. Physiol. 2000; 279:L408–L412.

    CAS  Google Scholar 

  38. Kummer W and Acker H. Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body. J. Appl. Physiol. 1995; 78:1904–1909.

    CAS  PubMed  Google Scholar 

  39. Lane RJ, Harvey JR, McPhee GJ, and Klemm MF. Nitric oxide and thiol reagent modulation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeci. J. Physiol. 2000; 525:363–376.

    Google Scholar 

  40. Madden JA, Dawson CA, and Harder DR. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J. Appl. Physiol. 1985; 59:113–118.

    CAS  PubMed  Google Scholar 

  41. Madden JA, Vadula MS, and Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am. J. Physiol. 1992; 263:L384–L393.

    CAS  PubMed  Google Scholar 

  42. Marshall C, Mamary AJ, Verhoeven AJ, and Marshall BE. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am. J. Respir. Cell Mol. Biol. 1996; 15:633–644.

    CAS  PubMed  Google Scholar 

  43. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, and Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ. Res. 2002; 90:1307–1315.

    Article  CAS  PubMed  Google Scholar 

  44. Michelakis ED, Rebeyka I, Wu X C, Nsair A, Thébaud B, Hashimoto K, Dyck JRB, Haromy A, Harry G, Barr A, and Archer SL. O2 sensing in the human ductus arteriosus — Regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ. Res. 2002; 91:478–486.

    Article  CAS  PubMed  Google Scholar 

  45. Mills E, and Jobsis FF. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tensio. J. Neurophysiol. 1972; 35:405–428.

    CAS  PubMed  Google Scholar 

  46. Mohazzab KM, Fayngersh RP, Kaminski PM, and Wolin MS. Potential role of NADH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses. Am. J. Physiol. 1995; 269:L637–L644.

    CAS  PubMed  Google Scholar 

  47. Mohazzab KM, and Wolin MS. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor. Am. J. Physiol. 1994; 267:L823–L831.

    CAS  PubMed  Google Scholar 

  48. Muramatsu M, Tyler RC, Rodman DM, and McMurtry IF. Possible role of T-type Ca2+ channels in L-NNA vasoconstriction of hypertensive rat lungs. Am. J. Physiol. 1997; 272:H2616–H2621.

    CAS  PubMed  Google Scholar 

  49. Nelson MT, and Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995; 268:C799–C822.

    CAS  PubMed  Google Scholar 

  50. Nunn FJ. Evolution of the atmosphere. Proc. Geol. Assoc. 1998; 109:1–13.

    CAS  PubMed  Google Scholar 

  51. O’Kelly I, Lewis A, Peers C, and Kemp PJ. O2 sensing by airway chemoreceptor-derived cells. Protein kinase c activation reveals functional evidence for involvement of NADPH oxidase. J. Biol. Chem. 2000; 275:7684–7692.

    CAS  PubMed  Google Scholar 

  52. Osipenko ON, Evans AM, and Gurney AM. Regulation of the resting potential of rabbit pulmonary arterymyocytes by a low threshold, O2-sensing potassium current. Br. J. Pharmacol. 1997; 120:1461–1470.

    CAS  PubMed  Google Scholar 

  53. Paky A, Michael JR, Burke-Wolin TM, Wolin MS, and Gurtner GH. Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J. Appl. Physiol. 1993; 74:2868–2874.

    CAS  PubMed  Google Scholar 

  54. Park MK, Bae YM, Lee SH, Ho WK, and Earm YE. Modulation of voltage-dependent K+ channel by redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit. Pflügers Arch. 1997; 434:764–771.

    Article  CAS  PubMed  Google Scholar 

  55. Park MK, Lee SH, Lee SJ, Ho WK, and Earm YE. Different modulation of Ca-activated K channels by the intracellular redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit. Pflügers Arch. 1995; 430:308–314.

    Article  CAS  PubMed  Google Scholar 

  56. Peng W, Hoidal JR, and Farrukh IS. Role of a novel KCa opener in regulating K+ channels of hypoxic human pulmonary vascular cells. Am. J. Respir. Cell Mol. Biol. 1999; 20:737–745.

    CAS  PubMed  Google Scholar 

  57. Peterson DA, Peterson DC, Reeve HL, Archer SL, and Weir EK. GTP (78) and GDP (γS) as electron donors: new wine in old bottles. Life Sci. 1999; 65:1135–1140.

    Article  CAS  PubMed  Google Scholar 

  58. Post JM, Gelband CH, and Hume JR. [Ca2+] inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization. Circ. Res. 1995; 77:131–139.

    CAS  PubMed  Google Scholar 

  59. Post JM, Hume JR, Archer SL, and Weir EK. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am. J. Physiol. 1992; 262:C882–C890.

    CAS  PubMed  Google Scholar 

  60. Reeve HL, Tolarova S, Nelson DP, Archer S, and Weir EK. Redox control of oxygen sensing in the rabbit ductus arteriosus. J. Physiol. 2001; 533:253–261.

    Article  CAS  PubMed  Google Scholar 

  61. Reeve HL, Weir EK, Nelson DP, Peterson DA, and Archer SL. Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp. Physiol. 1995; 80:825–834.

    CAS  PubMed  Google Scholar 

  62. Salvaterra CG, and Goldman WF. Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am. J. Physiol. 1993; 264:L323–L328.

    CAS  PubMed  Google Scholar 

  63. Schafer FQ, and Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001; 30:1191–1212.

    Article  CAS  PubMed  Google Scholar 

  64. Shigemori K, Ishizaki T, Matsukawa S, Sakai A, Nakai T, and Miyabo S. Adenine nucleotides via activation of ATP-sensitive K+ channels modulate hypoxic response in rat pulmonary arteries. Am. J. Physiol. 1996; 270:L803–L809.

    CAS  PubMed  Google Scholar 

  65. Suzuki YJ, Cleemann L, Abernethy DR, and Morad M. Glutathione is a cofactor for H2O2-mediated stimulation of Ca2+-induced Ca2+ release in cardiac myocytes. Free Radic. Biol. Med. 1998; 24:318–325.

    Article  CAS  PubMed  Google Scholar 

  66. Thuringer D, and Findlay I. Contrasting effects of intracellular redox couples on the regulation ofmaxi-K channels in isolated myocytes from rabbit pulmonary artery. J. Physiol. 1997; 500:583–592.

    CAS  PubMed  Google Scholar 

  67. Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C, Olney JW, and Zorumski CF. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron. 2001; 31:75–85.

    Article  CAS  PubMed  Google Scholar 

  68. Vejlstrup NG, and Dorrington KL. Intense slow hypoxic pulmonary vasoconstriction in gasfilled and liquid-filled lungs: an in vivo study in the rabbit. Acta Physiol. Scand. 1993; 148:305–313.

    CAS  PubMed  Google Scholar 

  69. Wang D, Youngson C, Wong V, Yeger H, Dinauer MC, Vega-Saenz ME, Rudy B, and Cutz E. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc. Natl. Acad. Sci. U. S. A. 1996; 93:13182–13187.

    CAS  PubMed  Google Scholar 

  70. Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88:1259–1266.

    CAS  PubMed  Google Scholar 

  71. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ. Res. 2002; 91:719–726.

    Article  CAS  PubMed  Google Scholar 

  72. Weir EK, and Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J. 1995; 9:183–189.

    CAS  PubMed  Google Scholar 

  73. Weissmann N, Grimminger F, Walmrath D, and Seeger W. Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir. Physiol. 1995; 100:159–169.

    Article  CAS  PubMed  Google Scholar 

  74. Welling KL, Sanchez R, Ravn JB, Larsen B, and Amtorp O. Effect of prolonged alveolar hypoxia on pulmonary arterial pressure and segmental vascular resistance. J. Appl. Physiol. 1993; 75:1194–1200.

    CAS  PubMed  Google Scholar 

  75. Wiener CM, and Sylvester JT. Effects of glucose on hypoxic vasoconstriction in isolated ferret lungs. J. Appl. Physiol. 1991; 70:439–446.

    CAS  PubMed  Google Scholar 

  76. Wilson HL, Dipp M, Thomas JM, Lad C, Galione A, and Evans AM. Adp-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor: a primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction. J. Biol. Chem. 2001; 276:11180–11188.

    CAS  PubMed  Google Scholar 

  77. Wolin MS, Burke-Wolin TM, and Mohazzab H. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms. Respir. Physiol. 1999; 115:229–238.

    Article  CAS  PubMed  Google Scholar 

  78. Youngson C, Nurse C, Yeger H, and Cutz E. Oxygen sensing in airway chemoreceptors. Nature 1993; 365:153–155.

    Article  CAS  PubMed  Google Scholar 

  79. Yuan X-J. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ. Res. 1995; 77:370–378.

    CAS  PubMed  Google Scholar 

  80. Yuan X-J, Goldman WF, Tod ML, Rubin LJ, and Blaustein MP. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol. 1993; 264:L116–L123.

    CAS  PubMed  Google Scholar 

  81. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am. J. Physiol. 1990; 259:H281–H289.

    CAS  PubMed  Google Scholar 

  82. Yuan X-J, Tod ML, Rubin LJ, and Blaustein MP. Deoxyglucose and reduced glutathione mimic effects of hypoxia on K+ and Ca2+ conductances in pulmonary artery cells. Am. J. Physiol. 1994; 267:L52–L63.

    CAS  PubMed  Google Scholar 

  83. Zaidi NF, Lagenaur CF, Abramson JJ, Pessah I, and Salama G. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. J. Biol. Chem. 1989; 264:21725–21736.

    CAS  PubMed  Google Scholar 

  84. Zeidner G, Sadja R, and Reuveny E. Redox-dependent gating of G protein-coupled inwardly rectifying K+ channels. J. Biol. Chem. 2001; 276:35564–35570.

    Article  CAS  PubMed  Google Scholar 

  85. Zulueta JJ, Yu FS, Hertig IA, Thannickal VJ, and Hassoun PM. Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am. J. Respir. Cell Mol. Biol. 1995; 12:41–49.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Olschewski, A., Weir, E.K. (2004). Redox Oxygen Sensing in Hypoxic Pulmonary Vasoconstriction. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_16

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics