Skip to main content

Chemistry of Oxygen and Its Derivatives in the Lung

  • Chapter
Hypoxic Pulmonary Vasoconstriction

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 252))

Summary

Oxygen, reactive oxygen species, nitricoxide and reactive nitrogen species have been shown to be involved in regulating both physiological as well as pathological processes. The role oxygen and its derivatives in a living organism is dependent on the particular species formed, its concentration, location, and the presence of antioxidant machinery. Of course, oxygen is necessary in the production of energy. In addition, its derivatives play an important role in cellular signaling by acting as a molecular switch by altering ion channel activity, blood flow, and the stability of transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer SL, Huang J, Henry T, Peterson D, and Weir EK. A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 1993; 73: 1100–1112.

    CAS  PubMed  Google Scholar 

  2. Berry C, Brosnan J, Fennell J, Hamilton CA, and Dominiczak AF. Oxidative stress and vascular damage in hypertension. Curr. Opin. Nephrol. Hypertens. 2001; 10: 247–255.

    CAS  PubMed  Google Scholar 

  3. Carlsson LM, Jonsson J, Edlund T, and Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. USA. 1995; 92: 6264–6268.

    CAS  PubMed  Google Scholar 

  4. Chang LY, Kang BH, Slot JW, Vincent R, and Crapo JD. Immunocytochemical localization of the sites of superoxide dismutase induction by hyperoxia in rat lungs. Lab. Invest. 1995; 73: 29–39.

    CAS  PubMed  Google Scholar 

  5. Clyde BL, Chang LY, Auten RL, Ho YS, and Crapo JD. Distribution of manganese superoxide disumase mRNA in normal and hyperoxic rat lung. Am. J. Respir. Cell Mol. Biol. 1993; 8: 530–537.

    CAS  PubMed  Google Scholar 

  6. Comhair SAA and Erzurum SC. Antioxidant Responses to oxidant-mediated lung diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001; 283: L246–L255.

    Google Scholar 

  7. Coursin DB, Cihla HP, Sempf J, Overley TD, and Oberley LW An immunohistochemical analysis of antioxidant and glutathione S-transferase enzyme levels in normal and neoplastic human lung. Histol. Histopathol. 1996; 11: 851–860.

    CAS  PubMed  Google Scholar 

  8. Crapo JD, Oury TD, Rabouille C, Slot JW, and Chang LY. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA. 1992; 89: 10405–10409.

    CAS  PubMed  Google Scholar 

  9. Fridovich I. Fundamental Aspects of Reactive Oxygen Species, or what’s the matter with oxygen? Ann. NY Acad. Sci. 1999; 893: 13–18.

    CAS  PubMed  Google Scholar 

  10. Gow AJ and Stamler JS. Reactions between nitric oxide and hemoglobin under physiological conditions. Nature 1998; 391: 169–173.

    CAS  PubMed  Google Scholar 

  11. Gurney AM. Multiple sites of oxygen sensing and their contributions to hypoxic pulmonary vasoconstriction. Respir. Physiol. Neurobiol. 2002; 132: 43–53.

    Article  CAS  PubMed  Google Scholar 

  12. Halliwell B and Gutteridge JMC, “Role of Free Radicals and Catalytic Metal Ions in Human Disease: an Overview.” In Methods in Enzymology Volume 186 Oxygen Radicals in Biological Systems Part B Oxygen Radicals and Antioxidants, Packer L and Glazer AN eds. Academic Press Inc: 1990, pp 1–88.

    Google Scholar 

  13. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M., Salic A, Asara JM, Lane WS, and Kaelin WG. HIF1 Targeted for VHL Mediated destruction by Proline hydroxylation: Implications for O2 sensing. Science 2001; 292: 464–467.

    CAS  PubMed  Google Scholar 

  14. Kinnula VL, Crapo JD, and Raivio KO. Biology of disease: generation and disposal of reactive oxygen metabolites in the lung. Lab. Invest. 1995; 73: 3–19.

    CAS  PubMed  Google Scholar 

  15. Jaakkola, P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, von Kreigsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Puch CW, and Ratcliffe PJ. Targeting of HIFα to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472, 2001.

    CAS  PubMed  Google Scholar 

  16. Jones RD, Hancock JT, and Morice AH. NADPH oxidase: a universal oxygen sensor? Free Radic. Biol. Med. 2000; 29: 416–424.

    Article  CAS  PubMed  Google Scholar 

  17. Lando D, Peet DJ, Whelan DA, Gorman JJ, and Whitelaw ML. Asparagine hydroxylation of the HIF Transactivation Domain: a hypoxic switch. Science 2002; 295: 858–861.

    Article  CAS  PubMed  Google Scholar 

  18. Lebowitz RM, Qhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, and Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxidase-deficient mice. Proc. Natl. Acad. Sci. USA. 1996; 93: 9782–9787.

    Google Scholar 

  19. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, and Epstein CJ. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 1995; 11: 376–381.

    Article  CAS  PubMed  Google Scholar 

  20. López-Barneo J, Pardal R, and Ortega-Sáenz P. Cellular mechanisms of oxygen sensing, Annu. Rev. Physiol. 2001; 63: 259–87.

    PubMed  Google Scholar 

  21. Matsuo M and Kaneko T. “The Chemistry of Reactive Oxygen Species and Related Free Radicals,” In Free Radicals in Exercise and Aging, Radak Z ed. Human Kinetics 2000, pp 1–34.

    Google Scholar 

  22. Monaco JA and Burke-Wolin T. NO and H2O2 mechanisms of guanylate cyclase activation in oxygen-dependent responses of rat pulmonary circulation. Am. J. Physiol. 1995; 268: L546–L550.

    CAS  PubMed  Google Scholar 

  23. Oury TD, Chang L-Y, Marklund SL, Day BJ, and Crapo JD. Immunocytochemical localization of extracelular superoxide dismutase in human lung. Lab. Invest. 1994; 70: 889–897.

    CAS  PubMed  Google Scholar 

  24. Oury TD, Day BJ, and Crapo JD. Extracellular superoxide dismutase; a regulator of nitric oxide bioavailability. Lab. Invest. 1996; 75: 617–636.

    CAS  PubMed  Google Scholar 

  25. Pawloski JR, Hess DT, and Stamler JS. Export by red blood cells of nitric oxide bioactivity. Nature 2001; 409: 622–626.

    Article  CAS  PubMed  Google Scholar 

  26. Pou S, Pou WS, Bredt DS, Snyder SH, and Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem. 1992; 267: 24173–24176.

    CAS  PubMed  Google Scholar 

  27. Stamler J. Redox signaling: nitrosylation and related target interaction of nitric oxide. Cell 1994; 78: 931–936.

    Article  CAS  PubMed  Google Scholar 

  28. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, and Piantadosi CA. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 1997; 276: 2034–2037.

    Article  CAS  PubMed  Google Scholar 

  29. Squadrito GL and Pryor WA Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite and carbon dioxide. Free Radic. Biol. Med. 1998; 392-403.

    Google Scholar 

  30. Tsan MF. Superoxide dismutase and pulmonary oxygen toxicity: lessons from transgenic and knockout mice. Int. J. Mol. Med. 2001; 7: 13–19.

    CAS  PubMed  Google Scholar 

  31. Waypa GB, Morton CA, Vincent PA, Mahoney JR, Johnston WK III, and Minnear FL. Oxidant-increased endothelial permeability: prevention with phosphodiesterase inhibition vs. cAMP production. J. Appl. Physiol. 2000; 88: 835–842.

    CAS  PubMed  Google Scholar 

  32. Waypa GB, Chandel NS, and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ. Res. 2001; 88: 1259–1266.

    CAS  PubMed  Google Scholar 

  33. Waypa GB and Schumacker PT. O2 sensing in hypoxic pulmonary vasoconstriction: the mitochondrial door re-opens. Respir. Physiol. Neurobiol. 2002; 132: 81–91.

    Article  CAS  PubMed  Google Scholar 

  34. Wink DA and Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 1998; 25: 434–456.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Palmer, L.A. (2004). Chemistry of Oxygen and Its Derivatives in the Lung. In: Yuan, J.X.J. (eds) Hypoxic Pulmonary Vasoconstriction. Developments in Cardiovascular Medicine, vol 252. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7858-7_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7858-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7857-6

  • Online ISBN: 978-1-4020-7858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics