Skip to main content

Angiogenesis: a potential target for therapy of soft tissue sarcomas

  • Chapter
Targeting Treatment of Soft Tissue Sarcomas

Part of the book series: Cancer Treatment and Research ((CTAR,volume 120))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelov L, Salhia B, Roncari L, et al: Inhibition of angiogenesis by blocking activation of the vascular endothelial growth factor receptor 2 leads to decreased growth of neurogenic sarcomas. Cancer Res 1999, 59:5536–41

    CAS  PubMed  Google Scholar 

  2. Arasleh K, Hannah A. The role of vascular endothelial growth factor (VEGF) in AIDS-related Kaposi’s sarcoma. Oncologist 2000, 5(suppl 1):28–31

    Google Scholar 

  3. Arbiser JL, Panigrathy D, Klauber N, et al: The antiangiogenic agents TNP-470 and 2-methoxyestradiol inhibit the growth of angiosarcoma in mice J. Am Acad Dermatol 1999; 40:925–9

    Article  CAS  PubMed  Google Scholar 

  4. Ascher G, Sgadari C, Bugarini R, et al. Serum concentrations of fibroblast growth factor 2 are increased in HIV type 1-infected patients and inversely correlated to survival probability. AIDS Res Hum Retrovirusses 2001; 17:1035–9

    Google Scholar 

  5. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistence. Nature 1997; 390:404–7

    Article  CAS  PubMed  Google Scholar 

  6. Borden EC, Baker LH, Bell RS, et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 2003; 9:1941–56

    PubMed  Google Scholar 

  7. Brizel DM, Scully SP, Harrelson J, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996; 56:941–3

    CAS  PubMed  Google Scholar 

  8. Broxterman HJ, Lankelma J, Hoekman K. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resistance Updates 2003; 6:111–27

    Article  CAS  PubMed  Google Scholar 

  9. Cao Y, O’Reilly MS, Marshall B, Flynn E, Ji R-W, and Folkman J. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Investigation 1998; 101:1055–63

    CAS  Google Scholar 

  10. Chao C, Al-Saleem T, Brooks JJ, Rogatko A, Kraybill WG, Eisenberg B. Vascular endothelial growth factor and soft tissue sarcomas: tumor expression correlates with grade. Ann Surg Oncol 2001; 8:260–67

    CAS  PubMed  Google Scholar 

  11. Choong PF, Ferno M, Akerman M, et al. Urokinase-plasminogen-activator levels and prognosis in 69 soft-tissue sarcomas. Int J Cancer 1996; 69:268–72

    Article  CAS  PubMed  Google Scholar 

  12. Cianfrocca M, Cooley TP, Lee JY, et al. Matrix metalloprotease inhibitor COL-3 in the treatment of AIDS-related Kaposi’s sarcoma: a phase I AIDS malignancy consortium study. J Clin Oncol 2002; 20:153–9

    Article  CAS  PubMed  Google Scholar 

  13. Comandone A, Boglione E, Berardengo A, et al. Microvessel density (MVD) as a marker of neoangiogenesis: prognostic significance in correlation with grading and stage in adult soft tissue sarcomas (STS) of the extremities. A perspective study. ASCO 2003; abstract 3303

    Google Scholar 

  14. Dezube BJ, Von Roenn JH, Holden-Wiltse J, et al. Fumagillin analog in the treatment of Kaposi’s sarcoma: a phase AIDS clinical trial group study, AIDS clinical trial group no 215 team. J Clin Oncol 1998; 16:1444–9

    CAS  PubMed  Google Scholar 

  15. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Research 2000; 60:1388–93

    CAS  PubMed  Google Scholar 

  16. Feldman AL. Serum endostatin levels are elevated in patients with soft tissue sarcoma. Cancer 2001; 91:1525–9

    Article  CAS  PubMed  Google Scholar 

  17. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002; 29:10–4

    CAS  PubMed  Google Scholar 

  18. Folkman J. Role of angiogenesis in tumor growth and metastases. Semin Oncol 2002; 29:15–8

    CAS  PubMed  Google Scholar 

  19. Fujimoto M, Kiyosawa T, Murata S, et al. Vascular endothelial growth factor in angiosarcoma. Anticancer Res 1998; 18:3725–30

    CAS  PubMed  Google Scholar 

  20. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 2000; 60:6553–8

    Google Scholar 

  21. Graeven U, Andre N, Achilles E, et al: Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in patients with soft-tissue sarcoma, J Cancer Res Clin Oncol 1999; 125:577–81

    CAS  PubMed  Google Scholar 

  22. ten Hagen TL, van der Veen AH, Nooijen PT, van Tiel ST, Seynagen AL, Eggermont AM. Low-dose tumor necrosis factor-alpha augments antitumor activity of stealth liposomal doxorubicin (DOXIL) in soft tissue sarcoma-bearing rats. Int J Cancer 2000; 87:829–37

    PubMed  Google Scholar 

  23. Hamano Y, Zeisberg M, Sugimoto H, et al. Pysiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaVbeta3 integrin. Cancer Cell 2003; 3:589–601

    Article  CAS  PubMed  Google Scholar 

  24. Hansma AHG, van Hensbergen Y, Kuenen BC, et al. A patient with a VEGF and endostatin producing gastrointestinal autonomic nerve tumor (GANT). Submitted.

    Google Scholar 

  25. Hashimoto M, Ohsawa M, Ohnishi A, et al. Expression of vascular endothelial growth factor and its receptor mRNA in angiosarcoma. Lab Invest 1995; 73:859–63

    CAS  PubMed  Google Scholar 

  26. Hata K, Hata T, and Miyazaki K. Expression of thymidine phosphorylase in uterine sarcoma and uterine leiomyoma:association with microvessel density and Doppler blood flow analysis. Ultrasound Obstet Gynecol 1997; 10:54–8

    Article  CAS  PubMed  Google Scholar 

  27. Heits F, Katschinski DM, Wiedeman GJ, Weiss C, Jelkman W. Serum vascular endothelial growth factor (VEGF), a prognostic factor in sarcoma and carcinoma patients. Int J Oncol 1997; 10:333–7

    CAS  Google Scholar 

  28. van Hensbergen Y, Broxterman HJ, Elderkamp YW, et al. A doxorubicin-CNGRC-peptide conjugate with prodrug properties. Biochem Pharmacol 2002; 63:897–08

    PubMed  Google Scholar 

  29. van Hensbergen Y, Broxterman HJ, Hanemaaijer R, Jorna AS, Verheul HM, Pinedo HM, Hoekman K. Soluble aminopeptidase N/CD13 in malignant and nonmalignant effusions and intratumoral fluid. Clin Cancer Res 2002; 8:3747–54

    PubMed  Google Scholar 

  30. Heymach JV. Angiogenesis and antiangiogenesis approaches to sarcomas. Current Opinion in Oncol 2001; 13:261–9

    CAS  Google Scholar 

  31. Holmgren L, Jackson G, Arbiser J. P53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma. Oncogene 1998; 17:819–24

    Article  CAS  PubMed  Google Scholar 

  32. Hornick JL, Fletcher CDM. Immunohistochemical staining for KIT (CD117) in soft tissue sarcomas is very limited in distribution. Am J Clin Pathol 117:188–93

    Google Scholar 

  33. Hu M, Nicolson GL, Trent JC, et al. Characterization of 11 human sarcoma cell strains: evaluation of cytogenetics, tumorogenicity, metastasis, and production of angiogenic factors. Cancer 2000; 95:1569–76

    Google Scholar 

  34. Huang J, Frischer JS, Serur A, et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. PNAS 2003; 100:7785–90

    CAS  PubMed  Google Scholar 

  35. Indraccolo S, Morini M, Gola E, et al. Effects of angiostatin gene transfer on functional properties of in vivo growth of Kaposi’s sarcoma cells. Cancer Res 2001; 61:5441–6

    CAS  PubMed  Google Scholar 

  36. Jain RK. Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res 1999; 5:1605–6

    CAS  PubMed  Google Scholar 

  37. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, and Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multislep development of fibrosarcoma. Cell 1991; 66:1095–1104

    Article  CAS  PubMed  Google Scholar 

  38. Kawauchi S, Fukuda T, Tsuneyoshi M. Angiogenesis does not correlate with prognosis or expression of vascular endothelial growth factor in synovial sarcomas. Oncol Rep 1999; 6:959–64

    CAS  PubMed  Google Scholar 

  39. Kuenen BC, Taberno J, Baselga J, et al. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin Cancer Res 2003; 9:1648–55

    CAS  PubMed  Google Scholar 

  40. Lejeune FJ, Pujol N, Lienard D, et al. Limb salvage by neoadjuvant isolated perfusion with TNFa and melphalan for non-resectable soft tissue sarcoma of the extremeties. Eur J Surg Oncol 2000; 26:669–78

    Article  CAS  PubMed  Google Scholar 

  41. Linder C, Linder S, Munck-Wikland E, and Strander H. Independent expression of serum vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in patients with carcinoma and sarcoma. Anticancer Res 1998; 18:2063–8

    CAS  PubMed  Google Scholar 

  42. Man S, Bocci G, Francia G, et al. Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 2002; 62:2731–5

    CAS  PubMed  Google Scholar 

  43. Masood R, Cai J, Zheng T, Smith DL, Naidu Y, and Gill PS. Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc Natl Acad Sci USA. 1997; 94:979–84

    Article  CAS  PubMed  Google Scholar 

  44. Mazel M, Clair P, Rousselle C, et al. Doxorubicin-conjugates overcome multidrug resistance. Anticancer Drugs 2001; 12:107–16

    CAS  PubMed  Google Scholar 

  45. Mori A, Arii S, Furutani M, et al. Vascular endothelial growth factor-induced tumor antigen and tumorigenicity in relation to metastasis in a HT1080 human fibrosarcoma model. Int J Cancer 1999; 80:738–43

    Article  CAS  PubMed  Google Scholar 

  46. Nakashima Y, Yano M, Kobayashi Y, et al. Endostatin gene therapy on murine lung metastases model utilizing cationic vector-mediated intravenous gene delivery. Gene Ther 2003; 10:123–30

    Article  CAS  PubMed  Google Scholar 

  47. Nordsmark M, Alsner J, Keller J, et al. Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 2001; 84:1070–5

    Article  CAS  PubMed  Google Scholar 

  48. Patel S, Jenkins J, Papadopoulos N, et al. A pilot study of vitaxin-an angiogenesis inhibitor-in patients with advanced leiomyosarcoma. Cancer 2001; 92:1347–8

    Article  CAS  PubMed  Google Scholar 

  49. Pallotta M, Lastiri J, Varela M, et al: Plasma MMP-9 activity in soft tissue sarcomas, Proc Am Soc Clin Oncol 2000; 19:2201

    Google Scholar 

  50. Pietras K, Rubin K, Sjoblom T, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 2002; 62:5476–84

    CAS  PubMed  Google Scholar 

  51. Pinedo HM, Verheul HMW, D’Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet 1998; 352:1775–7

    Article  CAS  PubMed  Google Scholar 

  52. Reijerkerk A, Mosnier LO, Kranenburg O, et al. Amyloid endostatin induces endothelial cell detachment by stimulation of the plasminogen activation system. Mol Cancer Res 2003; 1:561–8

    CAS  PubMed  Google Scholar 

  53. Robinson SP, McIntyre DJ, Checkley D, et al. Tumour dose response to the antivascular agent ZD6126 assessed by magnetic resonance imaging. Br J Cancer 2003; 88:1592–7

    Article  CAS  PubMed  Google Scholar 

  54. Rozados VR, Sanchez AM, Berra HH, Matar P, Gervasoni SI, Scharovsky OG. Metronomic therapy with cyclophosphamide induces rat lymphoma and sarcoma regression and is devoid of toxicity. Am Assoc Cancer Res 2003; 94the Ann Meeting, abstract 1620

    Google Scholar 

  55. Ruegg C, Yilmaz A, Bieler C, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin alpha Vbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 1998; 4:408–14

    CAS  PubMed  Google Scholar 

  56. Rutkowski P, Kaminska JU, Kowalska M, Ruka W, Steffen J. Cytokine serum levels in soft tissue sarcoma patients: correlations with clinico-pathological features and prognosis. Int J Cancer 2002; 100:463–71

    Article  CAS  PubMed  Google Scholar 

  57. Saenz NC, Heslin MJ, Adsay V, et al. Neovascularity and clinical outcome in high-grade extremity soft tissue sarcomas. Ann Surg Oncol 1998; 5:48–53

    CAS  PubMed  Google Scholar 

  58. Scappaticci FA, Marina N. New molecular targets and biological therapies in sarcomas. Cancer Treatment Rev 2001; 27:317–26

    CAS  Google Scholar 

  59. Sgadari C, Barillari G, Toschi E, et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med 2002; 8:225–32

    Article  CAS  PubMed  Google Scholar 

  60. Siemann DW, Rojiani AM. Antitumor efficay of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126. Int J Radiat Biol Phys 2002; 54:1512–7

    CAS  Google Scholar 

  61. Siemann DW, Rojiani AM. Enhancement of radiotherapy by the novel targeting agent ZD6126. Int J Radiat Biol Phys 2002; 53:164–71

    CAS  Google Scholar 

  62. Tamiya S, Ueki T, Tsuneyoshi M. Expressions of basic fibroblast growth factor and fibroblast growth factor receptor mRNA in soft tissue tumors by in situ hybridization. Mod Pathol 1998; 11:533–6

    CAS  PubMed  Google Scholar 

  63. Tomlinson J, Barsky SH, Nelson S, el al: Different patterns of angiogenesis in sarcoma and carcinomas. Clin Cancer Res 1999; 5:3516–22

    CAS  PubMed  Google Scholar 

  64. Toschi E, Barillari G, Sgadari C, et al. Activalion of matrix-metalloprotease-2 and membrane-type matrix-metalloprotease in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell 2001; 12:2934–46

    CAS  PubMed  Google Scholar 

  65. Verheul HMW, Hoekman K, Luykx-de Bakker S, et al. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997; 3:2187–90

    CAS  PubMed  Google Scholar 

  66. Verheul HMW, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MFBG, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 2000; 96:4216–21

    CAS  PubMed  Google Scholar 

  67. Verheul HMW, Hoekman K, Lupu F, Broxterman HJ, van der Valk P, Kakkar AK, Pinedo HM. Platelet and coagulation activation with vascular endothelial growth factor generation in soft tissue sarcomas. Clin Cancer Res 2000; 6:166–71

    CAS  PubMed  Google Scholar 

  68. Wang G, Dong Z, Xu G, et al. The effect of antibody against vascular endothelial growth factor on tumor growth and metastasis. J Cancer Res Clin Oncol 1998; 124:615–20

    CAS  PubMed  Google Scholar 

  69. Yoshida Y, Kurokawa T, Fukuno N, et al. Markers of apoptosis and angiogenesis indicate that carcinomatous components play an important role in the malignant behavior of uterine carcinosarcoma. Hum Pathol 2000; 31: 1448–54

    Article  CAS  PubMed  Google Scholar 

  70. Yudoh K, Kanamori M, Ohmori K, Yasuda T, Aoki M, Kimura T. Concentration of vascular endothelial growth factor in the tumour tissue as a prognostic factor of soft tissue sarcomas. Br J Cancer 2001; 84:1610–5

    Article  CAS  PubMed  Google Scholar 

  71. Zhang L, Yu D, Hu M, et al: Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 2000; 60:3655–61

    CAS  PubMed  Google Scholar 

  72. Zietz C, Rossle M, Haas C, et al: MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol 1998; 153:1425–33

    CAS  PubMed  Google Scholar 

  73. Zhang L, Yu D, Hicklin DJ, Hannay JA, Ellis LM, Pollock RE. Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res 2002; 62:2034–42

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hoekman, K., Pinedo, H.M. (2004). Angiogenesis: a potential target for therapy of soft tissue sarcomas. In: Verweij, J., Pinedo, H.M. (eds) Targeting Treatment of Soft Tissue Sarcomas. Cancer Treatment and Research, vol 120. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7856-0_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7856-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7808-8

  • Online ISBN: 978-1-4020-7856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics