Advertisement

Summary

A wide variety of nanocomposite materials have been synthesized that display a spectrum of interesting and technologically useful functional and structural material properties. Processing methods have been developed that allow for very precise control of the microstructure that in turn allows for sensitive tuning of these properties. Several nanocomposites have already been produced that are currently being used in commercial applications, and there is great promise that many more technologically useful systems will be available in the near future.

Keywords

Molecular Beam Epitaxy Percolation Threshold Layered Clay Reflection High Energy Electron Diffraction Nanoparticulate Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Vaia and E. P. Giannelis, MRS Bulletin, 26, 394 (2001).Google Scholar
  2. 2.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996) Chapter 6.Google Scholar
  3. 3.
    L. Esaki, in Synthetic Modulated Structures, L. L. Chang and B. C. Geissen, eds. (Academic, Orlando, 1985) Chapter 1.Google Scholar
  4. 4.
    G. Burns, Solid State Physics (Academic, San Diego, 1985) Chapter 18.Google Scholar
  5. 5.
    D. A. B. Miller, Opt. Photon. News, February, 257 (1990).Google Scholar
  6. 6.
    K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan, New York, 1992) Chapter 8.Google Scholar
  7. 7.
    Semiconductor Superlattices: Growth and Electronic Properties, H. T. Grahn, ed. (World Scientific, 1995).Google Scholar
  8. 8.
    G. E. Dieter, Mechanical Metallurgy (McGraw-Hill, Boston, 1986) p. 218.Google Scholar
  9. 9.
    R. R. Oberle, M. R. Scanlon, R. C. Cammarata, and P. C. Searson, Appl. Phys. Lett. 66, 46 (1995).CrossRefGoogle Scholar
  10. 10.
    I. Shao, P. M. Vereecken, C. L. Chien, P. C. Searson, and R. C. Cammarata, J. Mater. Res. 17, 1412 (2002). G. Slayter, Sci. Amer. 206, 124 (1962).Google Scholar
  11. 11.
    M. Chikashige, Alchemy and Other Chemical Achievements of the Ancient Orient, Engl. trans. Sasaki (Tokyo, Rokakuho Uchide, 1934) p. 84.Google Scholar
  12. 12.
    R. C. Cammarata, in Nanomaterials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata, eds. (Institute of Physics, Bristol, 1998) Chapter 6.Google Scholar
  13. 13.
    A. L. Greer and R. E. Somekh, in Materials Science and Technology: A Comprehensive Treatment-Volume 15, R. W. Cahn, P. Haasen, and E. J. Kramer (VCH, Weinheim, 1991).Google Scholar
  14. 14.
    M. Ohring, Materials Science of Thin Films (Academic, Boston, 2001).Google Scholar
  15. 15.
    J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic, Boston, 1993).Google Scholar
  16. 16.
    Molecular Beam Epitaxy: Applications to Key Materials, R. F. C. Farrow, ed. (Noyes, 1995).Google Scholar
  17. 17.
    Pulsed Laser Deposition of Thin Films, D. B. Chrisey and G. K. Hubler, eds. (Wiley-Interscience, New York, 1994).Google Scholar
  18. 18.
    P. C. Searson and T. F. Moffat, Crit. Rev. Surf. Chem. 3, 171 (1994).Google Scholar
  19. 19.
    C. Ross, Annu. Rev. Mater. Sci. 24, 159 (1994).Google Scholar
  20. 20.
    J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, and H. Yu, Langmuir, 3, 932 (1987).CrossRefGoogle Scholar
  21. 21.
    G. G. Roberts, Langmuir-Blodgett Films (New York: Plenum, 1990).Google Scholar
  22. 22.
    N. Tillman, A. Ulmann, and T. L. Penner, Langmuir, 5, 101 (1989).Google Scholar
  23. 23.
    W. J. Schrenk and T. Alfrey, in Polymer Blends, Volume 2, D. R. Paul and S. Newman, eds. (Academic, New York, 1978) p. 129.Google Scholar
  24. 24.
    E. Baer, A. Hiltner, and H. D. Keith, Science, 235, 1015 (1987).Google Scholar
  25. 25.
    D. Altbir and M. Kiwi, in New Trends in Magnetism, Magnetic Materials, and Their Applications, J. L. Moran-Lopez and J. M. Sanchez, eds. (Plenum, 1994).Google Scholar
  26. 26.
    E. E. Fullerton, in Handbook of Thin Film Process, D. A. Glocker and S. Ismat Shah, eds. (Institute of Physics Publishing, Bristol, 1997).Google Scholar
  27. 27.
    Magnetic Multilayers and Giant Magnetoresistance: Fundamentals and Industrial Applications, U Hartmann, ed. (Springer Verlag, 2000).Google Scholar
  28. 28.
    Ph. Houdy and P. Boher, J. Physique III, 4, 1589 (1994).Google Scholar
  29. 29.
    R. C. Cammarata, Thin Solid Films, 248, 82 (1994).Google Scholar
  30. 30.
    S. A. Barnett and M. Shinn, Annu Rev. Mater. Sci. 24, 481 (1994).Google Scholar
  31. 31.
    M. R. Stoudt, R. C. Cammarata, and R. E. Ricker, Scripta Mater. 43, 491 (2000).Google Scholar
  32. 32.
    M. R. Stoudt, R. E. Ricker, and R. C. Cammarata, Int. J. Fatigue 23, S215 (2001).CrossRefGoogle Scholar
  33. 33.
    J. Bevk, J. P. Harbison, and J. L. Bell, J. Appl. Phys. 49, 6031 (1978).CrossRefGoogle Scholar
  34. 34.
    J. Bevk, Annu. Rev. Mater. Sci. 13, 319 (1983).CrossRefGoogle Scholar
  35. 35.
    S. I. Hong, Scripta Mater. 39, 1685 (1998).Google Scholar
  36. 36.
    S. I. Hong and M. A. Hill, J. Mater. Sci. 37, 137 (2002).CrossRefGoogle Scholar
  37. 37.
    K. Han, V. J. Toplosky, R. Walsh, C. Swenson, B. Lesch, and V. I. Pantsyrnyi, IEEE Trans. Appl. Supercond. 12, 1176 (2002).Google Scholar
  38. 38.
    S. M. Prokes and K. L. Wang, MRS Bulletin, 24(8), 13 (1999).Google Scholar
  39. 39.
    T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science, 261, 1316 (1993).Google Scholar
  40. 40.
    P. C. Searson, R. C. Cammarata, and C. L. Chien, J. Electronic Mater. 24, 955 (1995).Google Scholar
  41. 41.
    I. Shao, M. W. Chen, C. L. Chien, P. C. Searson, and R. C. Cammarata, to be published.Google Scholar
  42. 42.
    B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).CrossRefGoogle Scholar
  43. 43.
    B. Abeles, in Applied Solid State Science: Advances in Materials and Device Research, Volume 6, R. Wolfe, ed. (Academic, New York, 1976) p. 1.Google Scholar
  44. 44.
    I. Shao, P. M. Vereecken, R. C. Cammarata, and P. C. Searson, J. Electrochem. Soc. 149, C610 (2002).CrossRefGoogle Scholar
  45. 45.
    A. L. Greer, Materials Sci. Eng. A 304–306, 68 (2001).Google Scholar
  46. 46.
    H. Zeng, J. Li, J. P. Liu, Z. L. Whang, and S. Sun, Nature 420, 395 (2002).CrossRefGoogle Scholar
  47. 47.
    M. Sternitzke, J. Eur. Ceram. Soc. 17, 1061 (1997).CrossRefGoogle Scholar
  48. 48.
    C. E. Borsa and R. J. Brook, in Ceramic Transactions, Volume 51, Ceramic Processing and Science, H. Hausner, G. L. Messing, and S-I. Hirano (American Ceramic Society, Westerville, OH, 1995) p. 653.Google Scholar
  49. 49.
    Y. Xu, A. Nakahira, and K. Niihara, J. Ceram. Soc. Jpn., 102, 312 (1994).Google Scholar
  50. 50.
    R. J. Conder, C. B. Ponton, and P. M. Marquis, BR. Ceramic Proc. 51, 105 (1993).Google Scholar
  51. 51.
    R. S. Haaland, B. I. Lee, and S. Y. Park, Ceram. Eng. Sci. Proc. 8, 879 (1987).Google Scholar
  52. 52.
    R. A. Vaia and R. Krishnamoorti, in Polymer Nanocomposites: Synthesis, Characterization, and Modeling, R. Krishamoorti and R. A. Vaia, eds. (Oxford University Press, New York, 2001) p.1.Google Scholar
  53. 53.
    R. Gangopadhyay and A. De, Chem. Mater. 12, 608 (2000).Google Scholar
  54. 54.
    E. Vasilu, C.-S. Wang, and R. A. Vaia, Mat. Res. Soc. Symp. Proc. 703, 243 (2002).Google Scholar
  55. 55.
    J. Collister, in Polymer Nanocomposites: Synthesis, Characterization, and Modeling, R. Krishamoorti and R. A. Vaia, eds. (Oxford University Press, New York, 2001) p. 7.Google Scholar
  56. 56.
    K. M. Unruh and C. L. Chien, in Nanomaterials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata, eds. (Institute of Physics, Bristol, 1998) Chapter 14.Google Scholar
  57. 57.
    S. Veprek, S. Reiprich, and L. Shizhi, Appl. Phys. Lett. 66, 2640 (1995).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Robert C. Cammarata
    • 1
  1. 1.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimore

Personalised recommendations