Carbon Nanotubes

  • Brian W. Smith
  • David E. Luzzi
Part of the Nanostructure Science and Technology book series (NST)


In this chapter, we have detailed the structure, properties, synthesis, characterization, modification, and applications of carbon nanotubes. This is a fantastically rich area of research: essentially no other material exhibits such a range of extraordinary fundamental properties that merits consideration for an equally broad multitude of applications. For this reason, nanotubes have drawn interest from both basic scientists and engineers. Despite the large scope of this chapter, it is important to remember that the content presented herein is only the proverbial tip of the iceberg. The field is both expansive and embryonic. We have covered only the basics of what is state-of-the-art for today, and the rate at which nanotube research progresses is staggering. Nevertheless, the knowledge we have provided will enable the inclined reader to examine the primary literature and uncover more of the evolving nanotube story.


Carbon Nanotubes Graphene Sheet High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Scanning Tunneling Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Feynman, in lecture to the American Physical Society, 1959).Google Scholar
  2. 2.
    K. E. Drexler, Engines of creation (Anchor Books, 1986).Google Scholar
  3. 3.
    H. W. Kroto, J. R. Heath, S. C. O’Brien et al., Nature 318, 162 (1985).CrossRefGoogle Scholar
  4. 4.
    E. Osawa, Kagaku 25, 850 (1970).Google Scholar
  5. 5.
    R. Bacon, Journal of Applied Physics 31, 283 (1960).CrossRefGoogle Scholar
  6. 6.
    J. Abrahamson, P. G. Wiles, and B. L. Rhoades, Proceedings of the 14th Biennial Conference on Carbon, 254 (1979).Google Scholar
  7. 7.
    S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
  8. 8.
    S. Iijima and T. Ichihashi, Nature 363, 603 (1993).CrossRefGoogle Scholar
  9. 9.
    D. S. Bethune, C. H. Kiang, M. S. de Vries et al., Nature 363, 605 (1993).CrossRefGoogle Scholar
  10. 10.
    A. Thess, R. Lee, P. Nikolaev et al., Science 273, 483 (1996).Google Scholar
  11. 11.
    C. Journet, W. K. Maser, P. Bernier et al., Nature 388, 756 (1997).Google Scholar
  12. 12.
    A. G. Rinzler, J. Liu, H. Dai et al., Appl. Phys. A67, 29 (1998).Google Scholar
  13. 13.
    R. Saito, M. Fujita, G. Dresselhaus et al., Appl. Phys. Lett. 60, 2204 (1992).Google Scholar
  14. 14.
    N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
  15. 15.
    J.-L. Sauvajol, E. Anglaret, S. Rols et al., Carbon 40, 1697 (2002).CrossRefGoogle Scholar
  16. 16.
    M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B57, 4277 (1998).Google Scholar
  17. 17.
    T. Guo, P. Nikolaev, A. Thess et al., Chem. Phys. Lett. 243, 49 (1995).CrossRefGoogle Scholar
  18. 18.
    A. R. Harutyunyan, B. Pradhan, U. J. Kim et al., Nano Letters 2, 525 (2002).CrossRefGoogle Scholar
  19. 19.
    S. Amelinckx, A. Lucas, and P. Lambin, Reports on Progress in Physics 62, 1471 (1999).CrossRefGoogle Scholar
  20. 20.
    A. M. Rao, E. Richter, S. Bandow et al., Science 275, 187 (1997).CrossRefGoogle Scholar
  21. 21.
    M. J. OConnell, S. M. Bachilo, C. B. Huffman et al., Science 297, 593 (2002).Google Scholar
  22. 22.
    X. P. Tang, A. Kleinhammes, H. Shimoda et al., Science 288, 492 (2000).CrossRefGoogle Scholar
  23. 23.
    A. S. Claye, N. M. Nemes, A. Janossy et al., Phys. Rev. B62, 4845 (2000).Google Scholar
  24. 24.
    H. Ulbricht, G. Moos, and T. Hertel, Phys. Rev. B66, 075404 (2002).Google Scholar
  25. 25.
    W. Zhou, Y. H. Ooi, R. Russo et al., Chem. Phys. Lett. 350 6, (2001).Google Scholar
  26. 26.
    S. Rols, Z. Benes, E. Anglaret et al., Phys. Rev. Lett. 85, 5222 (2000).CrossRefGoogle Scholar
  27. 27.
    T. W. Odom, J.-L. Huang, P. Kim et al., Nature 391, 62 (1998).Google Scholar
  28. 28.
    J. W. G. Wildoer, L. C. Venema, A. G. Rinzler et al., Nature 391, 59 (1998).Google Scholar
  29. 29.
    J. Lefebvre, J. F. Lynch, M. Llaguna et al., Appl. Phys. Lett. 75, 3014 (1999).CrossRefGoogle Scholar
  30. 30.
    J. Hone, M. C. Llaguno, N. M. Nemes et al., Appl. Phys. Lett. 77, 666 (2000).CrossRefGoogle Scholar
  31. 31.
    M. Bockrath, D. H. Cobden, P. L. McEuen et al., Science 275, 1922 (1997).CrossRefGoogle Scholar
  32. 32.
    Z. Yao, C. Dekker, and P. Avouris, in Carbon nanotubes: synthesis, structure, properties, and applications, edited by M. S. Dresselhaus, G. Dresselhaus and P. Avouris (Springer-Verlag, Berlin, 2001), Vol. 80.Google Scholar
  33. 33.
    D. J. Hornbaker, S.-J. Kahng, S. Misra et al., Science 295, 828 (2002).CrossRefGoogle Scholar
  34. 34.
    S. J. Tans, M. H. Devoret, H. Dai et al., Nature 386, 474 (1997).CrossRefGoogle Scholar
  35. 35.
    J. Chen, M. A. Hamon, H. Hu et al., Science 282, 95 (1998).Google Scholar
  36. 36.
    E. T. Mickelson, C. B. Huffman, A. G. Rinzler et al., Chem. Phys. Lett. 296, 188 (1998).CrossRefGoogle Scholar
  37. 37.
    V. N. Khabashesku, W. E. Billups, and J. L. Margrave, Accounts of Chemical Research 35, 1087 (2002).CrossRefGoogle Scholar
  38. 38.
    R. S. Lee, H. J. Kim, J. E. Fischer et al., Nature 388, 255 (1997).CrossRefGoogle Scholar
  39. 39.
    C. Zhou, J. Kong, E. Yenilmez et al., Science 290, 1552 (2000).CrossRefGoogle Scholar
  40. 40.
    A. S. Claye, J. E. Fischer, C. B. Huffman et al., J. Electrochem. Soc. 147, 2845 (2000).Google Scholar
  41. 41.
    P. M. Ajayan and S. Iijima, Nature 361, 333 (1993).CrossRefGoogle Scholar
  42. 42.
    E. Dujardin, T. W. Ebbesen, H. Hiura et al., Science 265, 1850 (1994).Google Scholar
  43. 43.
    B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998).Google Scholar
  44. 44.
    B. W. Smith and D. E. Luzzi, Chem. Phys. Lett. 321, 169 (2000).CrossRefGoogle Scholar
  45. 45.
    J.-M. Bonard, H. Kind, T. Stockli et al., Solid State Electronics 45, 893 (2001).CrossRefGoogle Scholar
  46. 46.
    R. Haggenmueller, H. H. Gommans, A. G. Rinzler et al., Chem. Phys. Lett. 330, 219 (2000).CrossRefGoogle Scholar
  47. 47.
    P. Avouris, Accounts of Chemical Research 35, 1026 (2002).CrossRefGoogle Scholar
  48. 48.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B61, 2981 (2000).Google Scholar
  49. 49.
    J. Bernholc, D. Drenner, M. B. Nardelli et al., Annual Review of Materials Research 32, 347 (2002).CrossRefGoogle Scholar
  50. 50.
    C. T. White and J. W. Mintmire, Nature 394, 29 (1998).Google Scholar
  51. 51.
    S. Rols, Ph.D. thesis, (University of Montpellier II, Montpellier, France, 2000).Google Scholar
  52. 52.
    Z. Benes, Ph.D. thesis (University of Pennsylvania, Philadelphia, PA, USA, 2001).Google Scholar
  53. 53.
    B. W. Smith, Ph.D. thesis (University of Pennsylvania, Philadelphia, PA, USA, 2001).Google Scholar
  54. 54.
    A. Bezryadin, A. R. M. Verschueren, S. J. Tans et al., Phys. Rev. Lett. 80, 4036 (1998).CrossRefGoogle Scholar
  55. 55.
    Y. K. Chen, A. Chu, J. Cook et al., Journal of Materials Chemistry 7, 545 (1997).Google Scholar
  56. 56.
    B. W. Smith and D. E. Luzzi, Chem. Phys. Lett. 331, 137 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Brian W. Smith
    • 1
  • David E. Luzzi
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphia

Personalised recommendations