Advertisement

Summary

Nanofluidics hold a promising future for developing novel molecular manipulation systems such as biomolecule sieves, which are essential in the context of the micro total analysis system. Unlike conventional nanoporous molecular filters or sieves, nanofluidic filters can be carefully designed to have a regular structure that can be used to manipulate biomolecules and other particles in a well-defined way. Implications of such devices are significant, and could lead to a new concept for biomolecule analysis and separation. Fluidic properties and molecular diffusion at the nanoscale is quite different from that of micro or macroscale, and nanofluidic devices can be designed to exploit these novel properties to provide solutions to various engineering problems. However, further basic and applied research should be done to investigate the science of fluid and molecules in fluid at the nanoscale.

Keywords

Electroosmotic Flow Fluorescence Correlation Spectroscopy Sacrificial Layer Single Molecule Detection Total Analysis System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Manz, N. Graber, and H. M. Widmer, Sensors and Actuators B1, 244 (1990).Google Scholar
  2. 2.
    S. C. Terry (Stanford ICL, Technical Report #4603-1, 1975).Google Scholar
  3. 3.
    S. C. Terry, J. H. Jerman, and J. B. Angell, IEEE Trans. Electron Devices ED-26, 1880 (1979).Google Scholar
  4. 4.
    J. C. Venter, et al., Science, 291, 1304 (2001).CrossRefGoogle Scholar
  5. 5.
    International Human Genome Sequencing Consortium, Nature 409, 860 (2001).Google Scholar
  6. 6.
    D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, Anal. Chem. 74, 2623 (2002).CrossRefGoogle Scholar
  7. 7.
    P.-A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Anal. Chem. 74, 2637 (2002).CrossRefGoogle Scholar
  8. 10.
    J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, Biophys. J. 71, 3430 (1996).Google Scholar
  9. 11.
    J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin, Phys. Rev. Lett. 80, 3863 (1998).CrossRefGoogle Scholar
  10. 12.
    C.-F. Chou, et al., Proc. Natl. Acad. Sci. U.S.A. 96, 13762 (1999).Google Scholar
  11. 13.
    A. v. Oudenaarden and S. G. Boxer, Science 285, 1046 (1999).Google Scholar
  12. 14.
    T. F. Weiss, Cellular Biophysics. Volume 1: Transport (MIT Press, 1995).Google Scholar
  13. 15.
    S. C. Jacobson, J. P. Alarie, and J. M. Ramsey, in Proceedings of the microTAS 2001 Symposium, edited by J. M. Ramsey and A. v. d. Berg (Kluwer Academic Publishers, Monterey, CA, 2001), p. 57–59.Google Scholar
  14. 16.
    J. Horvath and V. Dolnik, Electrophoresis 22, 644 (2001).CrossRefGoogle Scholar
  15. 17.
    P. G. Righetti, C. Gelfi, B. Verzola, and L. Castelletti, Electrophoresis 22, 603 (2001).Google Scholar
  16. 18.
    R. B. M. Schasfoort, S. Schlautmann, J. Hendrikse, and A. v. d. Berg, Science (Washington, D.C., 1883-) 286, 942 (1999).CrossRefGoogle Scholar
  17. 19.
    D. Long, J.-L. Viovy, and A. Ajdari, Phys. Rev. Lett. 76, 3858 (1996).Google Scholar
  18. 20.
    A. G. Ogston, Trans. Faraday Soc. 54, 1754 (1958).CrossRefGoogle Scholar
  19. 21.
    P. G. DeGennes, J. Chem. Phys. 55, 572 (1971).Google Scholar
  20. 22.
    P. G. DeGennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
  21. 23.
    L. S. Lerman and H. L. Frisch, Biopolymers 21, 995 (1982).CrossRefGoogle Scholar
  22. 24.
    O. J. Lumpkin and B. H. Zimm, Biopolymers 21, 2315 (1982).CrossRefGoogle Scholar
  23. 25.
    T. T. Perkins, D. E. Smith, and S. Chu, Science 264, 819 (1994).Google Scholar
  24. 26.
    G. W. Slater and J. Noolandi, Phys. Rev. Lett. 55, 1579 (1985).CrossRefGoogle Scholar
  25. 27.
    T. A. J. Duke, A. N. Semenov, and J. L. Viovy, Phys. Rev. Lett. 69, 3260 (1992).CrossRefGoogle Scholar
  26. 28.
    T. A. J. Duke, J. L. Viovy, and A. N. Semenov, Biopolymers 34, 239 (1994).CrossRefGoogle Scholar
  27. 29.
    G. F. Carle, M. Frank, and M. V. Olson, Science 232, 65 (1986).Google Scholar
  28. 30.
    E. M. Renkin, Journal of General Physiology 38, 225 (1954).Google Scholar
  29. 31.
    J. C. Giddings, Unified Separation Science (John Wiley & Sons, Inc, New York, NY, 1991).Google Scholar
  30. 32.
    R. E. Beck and J. S. Schultz, Science, 170, 1302 (1970).Google Scholar
  31. 33.
    R. E. Beck and J. S. Schultz, Biochimica et Biophysica Acta 255, 273 (1972).Google Scholar
  32. 34.
    W. M. Deen, AIChE J. 33, 1409 (1987).CrossRefGoogle Scholar
  33. 35.
    M. Daoud and P. G. DeGennes, J. Physique 38, 85 (1977).Google Scholar
  34. 36.
    F. Brochard, J. Physique, 38, 1285 (1977).Google Scholar
  35. 37.
    S. Daoudi and F. Brochard, Macromolecules 11, 751 (1978).CrossRefGoogle Scholar
  36. 38.
    M. Muthukumar, J. Non-Cryst. Solids 131–133, 654 (1991).Google Scholar
  37. 39.
    O. B. Bakajin, et al., Phys. Rev. Lett. 80, 2737 (1998).CrossRefGoogle Scholar
  38. 40.
    J. Han and H. G. Craighead, Science 288, 1026 (2000).CrossRefGoogle Scholar
  39. 41.
    J. Han, S. W. Turner, and H. G. Craighead, Phys. Rev. Lett. 83, 1688 (1999).Google Scholar
  40. 42.
    J. Han and H. G. Craighead, Anal. Chem. 74, 394 (2002).CrossRefGoogle Scholar
  41. 43.
    S. W. P. Turner, M. Cabodi, and H. G. Craighead, Phys. Rev. Lett. 88, 128013 (2002).CrossRefGoogle Scholar
  42. 44.
    S. Waki, J. D. Harvey, and A. R. Bellamy, Biopolymers 21, 1909 (1982).CrossRefGoogle Scholar
  43. 45.
    T. K. Attwood, B. J. Nelmes, and D. B. Sellen, Boipolymers 27, 201 (1988).Google Scholar
  44. 46.
    D. J. Beebe, et al., Nature (London) 404, 588 (2000).CrossRefGoogle Scholar
  45. 47.
    S. N. Brahmasandra, et al., Electrophoresis 22, 300 (2001).Google Scholar
  46. 48.
    J. Han and A. K. Singh, in Proceedings of the microTAS 2002 Symposium, edited by A. van den Berg (Kleuwer Academic Publishers, Nara, Japan, 2002), Vol. 1, p. 596.Google Scholar
  47. 49.
    Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, Applied Physics Letters 78, 2589 (2001).Google Scholar
  48. 50.
    C. J. Brinker, et al., J. Membr. Sci. 94, 85 (1994).CrossRefGoogle Scholar
  49. 51.
    C. J. Brinker, Curr. Opin. Solid St. M. 1, 798 (1996).Google Scholar
  50. 52.
    N. K. Raman, M. T. Anderson, and C. J. Brinker, Chem. Mater. 8, 1682 (1996).CrossRefGoogle Scholar
  51. 53.
    C. Yu, M. C. Xu, F. Svec, and J. M. J. Frechet, J. Polym. Sci. Pol. Chem. 40, 755 (2002).CrossRefGoogle Scholar
  52. 54.
    D. J. Throckmorton, T. J. Shepodd, and A. K. Singh, Anal. Chem. 74, 784 (2002).CrossRefGoogle Scholar
  53. 55.
    S. W. Turner, A. M. Perez, A. Lopez, and H. G. Craighead, J. Vac. Sci. Technol., B 16, 3835 (1998).Google Scholar
  54. 56.
    M. Park, et al., Science, 276, 1401 (1997).CrossRefGoogle Scholar
  55. 57.
    D. Nykypanchuk, H. H. Strey, and D. A. Hoagland, Science 297, 987 (2002).CrossRefGoogle Scholar
  56. 58.
    G. Wallis and D. I. Pomerantz, J. Appl. Phys. 40, 3946 (1969).CrossRefGoogle Scholar
  57. 59.
    P. Barth, Sensors and Actuators, A21–A23, 919 (1990).Google Scholar
  58. 60.
    J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, Anal. Chem. 73, 1622 (2001).CrossRefGoogle Scholar
  59. 61.
    H. Becker and C. Gartner, Electrophoresis 21, 12 (2000).CrossRefGoogle Scholar
  60. 62.
    D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998).CrossRefGoogle Scholar
  61. 63.
    B.-H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, Journal of Microelectromechanical Systems, 9, 76 (2000).CrossRefGoogle Scholar
  62. 64.
    B.-H. Jo, J. Moorthy, and D. J. Beebe, in Proceedings of Micro Total Analysis Systems 2000 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000), p. 335–338.Google Scholar
  63. 65.
    M. A. Unger, et al., Science 288, 113–116 (2000).CrossRefGoogle Scholar
  64. 66.
    F. H. Kirkpatrick, edited by E. Lai and B. Birren (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990).Google Scholar
  65. 67.
    W. D. Volkmuth and R. H. Austin, Nature (London) 358, 600 (1992).CrossRefGoogle Scholar
  66. 68.
    T. A. J. Duke, R. H. Austin, E. C. Cox, and S. S. Chan, Electrophoresis 17, 1075 (1996).CrossRefGoogle Scholar
  67. 69.
    O. Bakajin, et al., Anal. Chem. 73, 6053 (2001).CrossRefGoogle Scholar
  68. 70.
    L. R. Huang, et al., Nat. Biotechnol. 20, 1048 (2002).CrossRefGoogle Scholar
  69. 71.
    J. Han and H. G. Craighead, J. Vac. Sci. Technol., A 17, 2142 (1999).Google Scholar
  70. 72.
    O. A. Saleh and L. L. Sohn, Rev. Sci. Instrum. 72, 4449 (2001).CrossRefGoogle Scholar
  71. 73.
    O. A. Saleh and L. L. Sohn, in Proceedings of the Micro Total Analysis Systems 2001, edited by J. M. Ramsey and A. v. d. Berg (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001), p. 54–56.Google Scholar
  72. 74.
    L. L. Sohn, et al., Proc. Natl. Acad. Sci. U.S.A. 97, 10687 (2000).Google Scholar
  73. 75.
    M. Foquet, et al., Anal. Chem. 74, 1415 (2002).CrossRefGoogle Scholar
  74. 76.
    J. O. Tegenfeldt, et al., Phys. Rev. Lett. 86, 1378 (2001).CrossRefGoogle Scholar
  75. 77.
    J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).CrossRefGoogle Scholar
  76. 78.
    A. Meller, et al., Proc. Natl. Acad. Sci. U.S.A. 97, 1079 (2000).CrossRefGoogle Scholar
  77. 79.
    M. Akeson, et al., Biophys. J. 77, 3227 (1999).Google Scholar
  78. 80.
    S. Nie and R. N. Zare, Annu. Rev. Biophys. Biomol Struct. 26, 567 (1997).CrossRefGoogle Scholar
  79. 81.
    T. Basché, S. Nie, and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 98, 10527 (2001).Google Scholar
  80. 82.
    M. Eigen and R. Rigler, Proc. Natl. Acad. Sci. U.S.A. 91, 5740 (1994).Google Scholar
  81. 83.
    S. Weiss, Science (Washington, D.C., 1883-) 283, 1676 (1999).CrossRefGoogle Scholar
  82. 84.
    H. Qian and E. L. Elson, Applied Optics 30, 1185 (1991).Google Scholar
  83. 85.
    K. M. Berland, P. T. C. So, and E. Gratton, Biophysical Journal 68, 694 (1995).Google Scholar
  84. 86.
    P. T. C. So, C. Dong, K. M. Berland, and E. Gratton, Biophysical Journal 64, 218a (1993).Google Scholar
  85. 87.
    T. Hirschfeld, Appl. Opt. 15, 2965 (1976).Google Scholar
  86. 88.
    E. Betzig and J. K. Trautman, Science 257, 189 (1992).Google Scholar
  87. 89.
    E. Betzig and R. J. Chichester, Science 262, 1422 (1993).Google Scholar
  88. 90.
    E. Betzig, R. J. Chichester, F. Lanni, and D. Taylor, BioImaging, 1, 129 (1993).CrossRefGoogle Scholar
  89. 91.
    M. J. Levene, et al., Science, 299, 682 (2003).CrossRefGoogle Scholar
  90. 92.
    J. Korlach, et al, Biophys. J. 82, 507a (2002).Google Scholar
  91. 93.
    J. Korlach, et al, Biophys. J. 80, 147a (2001).Google Scholar
  92. 94.
    P. H. Paul, D. W. Arnold, and D. J. Rakestraw, in Proceedings of Micro Total Analysis Systems 1998 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998), p. 49–52.Google Scholar
  93. 95.
    J. P. Alarie, et al., in Proceedings of the microTAS 2001 Symposium, edited by A. v. d. Berg (Kluwer Academic Publishers, Monterey, CA, 2001), p. 131–132.Google Scholar
  94. 96.
    P. H. Paul, D. W. Arnold, D. W. Neyer, and K. B. Smith, in Proceedings of the Micro Total Analysis Systems 2000 (Kluwer Academic Publishers, 2000), p. 583–590.Google Scholar
  95. 97.
    Y. Takamura, et al., in Proceedings of the microTAS 2001 Symposium, edited by A. v. d. Berg (Kluwer Academic Publishers, Monterey, CA, 2001), p. 230–232.Google Scholar
  96. 98.
    O. T. Guenat, D. Ghiglione, W. E. Morf, and N. F. d. Rooij, Sensors and Actuators, B: Chemical Sensors and Materials 72, 273 (2001).Google Scholar
  97. 99.
    I. M. Lazar, et al., Journal of Chromatography, A 892, 195 (2000).Google Scholar
  98. 100.
    I. M. Lazar and B. L. Karger, in Proceedings of the microTAS 2001 Symposium, edited by A. v. d. Berg (Kluwer Academic Publishers, Monterey, CA, 2001), p. 219.Google Scholar
  99. 101.
    E. M. Purcell, Am. J. Phys. 45, 3 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Jongyoon Han
    • 1
  1. 1.Department of Electrical Engineering and Computer Science Division of Biological EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations