Biomimetic Nanostructures

  • Dennis E. Discher
Part of the Nanostructure Science and Technology book series (NST)


With the increasing exploration and development of polymer aggregate systems, one underlying goal is to expand upon and clarify the properties of natural cell systems that have evolved over eons. It is already clear, for example, that many biological membrane processes can be faithfully mimicked by synthetic polymer vesicles (e.g., protein integration, fusion, DNA encapsulation, compatibility). It is equally clear that biomembranes are not optimized for either stability or equilibrium. However, they do not need to be since they encapsulate sufficient machinery to maintain a dynamic, animated state. Perhaps the most useful concept to mimic and extend with block copolymers is the amphiphilicity template provided by lipids and related. In light of the material versatility of polymers in terms of their molecular weight, polydispersity, reactivity, and synthetic diversity, a strictly polymer approach to the self-assembly of biomimetic nanostructures would seem to offer significant possibilities.


Block Copolymer Interfacial Tension Diblock Copolymer Membrane Thickness Lipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Mogilner and G. Oster, Biophys. J. 71, 3030 (1996).Google Scholar
  2. 2.
    A. D. Bangham, Chem. Phys. of Lipids 64, 275 (1993).Google Scholar
  3. 3.
    B. Cornet, E. Decroly, D. Thines-Sempoux, J. M. Ruysschaert, and M. Vandenbranden, AIDS Res. & Hum. Retroviruses. 8, 1823 (1992).Google Scholar
  4. 4.
    D. K. Fygenson, J. F. Marko, and A. Libchaber, Phys. Rev. Lett. 79, 4497 (1997).CrossRefGoogle Scholar
  5. 5.
    F. S. Bates and G. H. Fredrickson, Phys. Today 52, 32 (1999).Google Scholar
  6. 6.
    D. E. Discher and A. Eisenberg. Science 297, 967 (2002).CrossRefGoogle Scholar
  7. 7.
    J. Israelachvili, Intermolecular and Surface Forces, Ed. 2 (Academic Press, New York, 1991).Google Scholar
  8. 8.
    J. M. Anderson, Annu. Rev. Mater. Res. 31, 81 (2001).CrossRefGoogle Scholar
  9. 9.
    H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, Macromolecules 35, 8203 (2002).CrossRefGoogle Scholar
  10. 10.
    R. Lipowsky and E. Sackmann, Eds., Structure and Dynamics of Membranes-From Cells to Vesicles. (Elsevier Science, Amsterdam, 1995).Google Scholar
  11. 11.
    H. Aranda-Espinoza, H. Bermudez, F. S. Bates, and D. E. Discher, Phys. Rev. Lett. 87, 208301 (2001).CrossRefGoogle Scholar
  12. 12.
    R. Hirn, T. M. Bayer, J. O. Radler, and E. Sackmann, Faraday Discussions 111, 17 (1998).Google Scholar
  13. 13.
    F. Brochard and J. F. Lennon, J. Phys.-Paris 36, 1035 (1975).Google Scholar
  14. 14.
    P. Dalhaimer, F. S. Bates, H. Aranda-Espinoza, and D. E. Discher, Comptes Rendus de d’Academie des Sciences-Serie IV Physique 4, 251 (2003).Google Scholar
  15. 15.
    J. F. Marko, Europhys. Lett. 38, 183 (1997).CrossRefGoogle Scholar
  16. 16.
    F. K. Bedu-Addo, P. Tang, Y. Xu, and L. Huang, Pharmaceutical Res. 13, 710 (1996).Google Scholar
  17. 17.
    I. Eggens, T. Chojnacki, L. Kenne, and G. Dallner, Biochim. Biophys. Acta. 751, 355 (1983).Google Scholar
  18. 18.
    L. Zhang and A. Eisenberg, Science 268, 727 (1995).Google Scholar
  19. 19.
    S. C. Semple, A. Chonn, and P. G. Cullis, Adv. Drug Delivery Rev. 32, 3 (1998).CrossRefGoogle Scholar
  20. 20.
    E. Evans and R. Skalak, Mechanics and thermodynamics of biomembranes. CRC press, Boca Raton, Fla. (1980).Google Scholar
  21. 21.
    M. Bloom, E. Evans, and O. G. Mouritsen, Rev. Biophys. 24, 293 (1991).Google Scholar
  22. 22.
    H. G. Dobereiner, E. Evans, M. Kraus, U. Seifert, and M. Wortis, Phys. Rev. E 55, 4458 (1997).Google Scholar
  23. 23.
    C. F. Higgins, Cell 79, 393 (1994).CrossRefGoogle Scholar
  24. 24.
    L. Luo and A. Eisenberg, Ang. Chem. Int. Ed. 41, 1001 (2002).Google Scholar
  25. 25.
    J. J. L. M. Cornelissen, M. Fischer, N. A. Sommerdijk, and R. J. M. Nolte, Science 280, 1427 (1998).CrossRefGoogle Scholar
  26. 26.
    J. C.-M. Lee, et at., Biotech. and Bioeng. 43, 135 (2001).Google Scholar
  27. 27.
    J. C.-M. Lee, M. Santore, F. S. Bates, and D. E. Discher, Macromolecules 35, 323–326 (2002).Google Scholar
  28. 28.
    R. Dimova, U. Seifert, B. Pouligny, S. Forster, and H.-G. Dobereiner, Eur. Phys. J. E 7, 241 (2002).CrossRefGoogle Scholar
  29. 29.
    B. M. Discher et al. J. Phys. Chem. B 106, 2848 (2002).CrossRefGoogle Scholar
  30. 30.
    H. Ringsdorf, B. Schlarb, and J. Venzmer, Angew. Chem Int. Edit. 27, 113 (1988).CrossRefGoogle Scholar
  31. 31.
    S. C. Liu and D. F. O’Brien, J. Am. Chem. Soc. 124, 6037 (2002).Google Scholar
  32. 32.
    K. Schillen, K. Bryskhe, and Y. S. Mel’nikova, Macromolecules 32, 6885 (1999).CrossRefGoogle Scholar
  33. 33.
    C. Nardin, T. Hirt, J. Leukel, and W. Meier, Langmuir 16, 1035 (2000).Google Scholar
  34. 34.
    N. A. Sommerdijk, J. M., S. J. Holder, R. C. Hiorns, R. G. Jones, and R. J. M. Nolte. Macromolecules 33, 8289 (2000).CrossRefGoogle Scholar
  35. 35.
    A. Napoli, N. Tirelli, G. Kilcher, and J. A. Hubbell, Macromolecules 34, 8913 (2001).CrossRefGoogle Scholar
  36. 36.
    S. A. Hagan et al., Langmuir 12, 2153 (1996).CrossRefGoogle Scholar
  37. 37.
    R. P. Batycky, J. Hanes, R. Langer, and D. A. Edwards, J. Pharm. Sci. 86, 1464 (1997).CrossRefGoogle Scholar
  38. 38.
    F. Brochard-Wyard, Europhys. Lett. 23, 105 (1993).Google Scholar
  39. 39.
    Y. Y. Won, K. Paso, H. T. Davis, and F. S. Bates, J. Phys. Chem. B 105, 8302 (2001).CrossRefGoogle Scholar
  40. 40.
    Y. Y. Won, H. T. Davis, and F. S. Bates, Science 283, 960 (1999).CrossRefGoogle Scholar
  41. 41.
    B. M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y.-Y. Won, F. S. Bates, J. Phys. Chem. B 106, 2848 (2002).CrossRefGoogle Scholar
  42. 42.
    D. D. Lasic, D. Papahadjopoulos, Eds., Medical applications of liposomes. (Elsevier Science, Amsterdam, 1998).Google Scholar
  43. 43.
    R. Mathur and P. Capasso, ACS Sym. Ser. 610, 219 (1995).Google Scholar
  44. 44.
    J. M. Gebicki and M. Hicks, Nature 243, 232 (1973).CrossRefGoogle Scholar
  45. 45.
    H. T. Jung, B. Coldren, J. A. Zasadzinski, D. J. Iampietro, and E. W. Kaler, P. Natl. Acad. Sci. USA 98, 1353 (2001).Google Scholar
  46. 46.
    M. Regenbrecht, S. Akari, S. Forster, and H. Mohwald, J. Phys. Chem. B 103, 6669 (1999).Google Scholar
  47. 47.
    F. Caruso, D. Trau, H. Mohwald, and R. Renneberg, Langmuir 16, 1485 (2000).Google Scholar
  48. 48.
    Jenekhe S. A., X. L. Chen, Science 279, 1903 (1998).CrossRefGoogle Scholar
  49. 49.
    R. W. Meier, C. Nardin, and M. Winterhaller, Angew. Chem. Int. Ed. 39, 4599 (2000).CrossRefGoogle Scholar
  50. 50.
    N. Dan and S. A. Safran, Macromolecules 27, 5766 (1994).Google Scholar
  51. 51.
    A. Graff, M. Sauer, P. V. Gelder, and W. Meier, P. Natl. Acad. Sci. USA 99, 5064 (2002).CrossRefGoogle Scholar
  52. 52.
    K. Velonia, A. E. Rowan, and R. J. M. Nolte, J. Am. Chem. Soc. 124, 4224 (2002)CrossRefGoogle Scholar
  53. 53.
    J. C.-M. Lee, M. Santore, F. S. Bates, and D. E. Discher, Macromolecules 35, 323–326 (2002).Google Scholar
  54. 54.
    P. Photos, B. M. Discher, L. Bacakova, F. S. Bates, and D. E. Discher, unpublished.Google Scholar
  55. 55.
    O. Lambert, L. Letellier, W. M. Gelbart, and J.-L. Rigaud, P. Natl. Acad. Sci. USA 97, 7248 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Dennis E. Discher
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphia

Personalised recommendations