Advertisement

Quantum-Confined Optoelectronic Systems

  • Simon Fafard
Part of the Nanostructure Science and Technology book series (NST)

Keywords

Semiconductor Optical Amplifier IEEE Photonic Technology Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. a)
    S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, Phys. Rev. B 52, 5752 (1995)Google Scholar
  2. 1. b)
    R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff Ibidem, Phys. Rev. B 50, 8086 (1994)Google Scholar
  3. 1. c)
    R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff Ibidem, Superlattices and Microstructures, 16, 303 (1994)Google Scholar
  4. 1. d)
    S. Fafard, D. Leonard, J. M. Merz, and P. M. Petroff, Appl. Phys. Lett. 65, 1388 (1994)CrossRefGoogle Scholar
  5. 1. e)
    S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, Surface Science 361, 778, (1996).CrossRefGoogle Scholar
  6. 2.
    K. Mukai, N. Ohtsuka, H. Shoji, M. Sugawara, Appl. Phys. Lett. 68, 3013 (1996).CrossRefGoogle Scholar
  7. 3.
    R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, Z. Liliental-Weber, Phys. Rev. B 58, R4262 (1998).Google Scholar
  8. 4.
    S. Raymond, P. Hawrylak, C. Gould, S. Fafard, A. Sachrajda, M. Potemski, A. Wojs, S. Charbonneau, D. Leonard, P. M. Petroff and J. L. Merz, Solid State Communications 101, 883 (1997).CrossRefGoogle Scholar
  9. 5.
    G. Park, O. B. Shchekin, D. L. Huffaker, D. G. Deppe, Appl. Phys. Lett. 73, 3351 (1998).Google Scholar
  10. 6.
    Y. Sugiyama, Y. Nakata, T. Futatsugi, M. Sugawara, Y. Awano, N. Yokoyama, Jpn. J. Appl. Phys. 36, LI58 (1997).Google Scholar
  11. 7.
    M. Grundmann, N. N. Ledentsov, O. Stier, D. Bimberg, V. M. Ustinov, P. S. Kopev, and Zh. I. Alferov, Appl. Phys. Lett. 68, 979 (1996).CrossRefGoogle Scholar
  12. 8.
    S. Raymond, X. Guo, J. L. Merz, and S. Fafard, Phys. Rev. B 59, 7624 (1999).Google Scholar
  13. 9.
    H. Lipsanen, M. Sopanen, J. Ahopelto, Phys. Rev. B 51, 13868 (1995).Google Scholar
  14. 10.
    S. Fafard, Z. R. Wasilewski, C. Ní. Allen, D. Picard, M. Spanner, J. P. McCaffrey, and P. G. Piva, Phys. Rev. B 59, 15368 (1999).Google Scholar
  15. 11.
    S. Fafard, Z. R. Wasilewski, C. Nì Allen, D. Picard, P. G. Piva, and J. P. McCaffrey, Superlat. and Microst. 25, 87 (1999).Google Scholar
  16. 12.
    S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, and S. Charbonneau, Science 274, 1350 (1996)CrossRefGoogle Scholar
  17. 13.
    S. Fafard, Z. R. Wasilewski, C. Ní. Allen, K. Hinzer, J. P. McCaffrey, and Y. Feng, Appl. Phys. Lett. 75, 986 (1999).Google Scholar
  18. 14.
    S. Fafard, Photonics Spectra 31, 160 (1997).Google Scholar
  19. 15.
    R. Mirin, A. Gossard, and J. Bowers, Electronics Lett. 32, 1732 (1996).CrossRefGoogle Scholar
  20. 16.
    Q. Xie, A. Kalburge, P. Chen, and A. Madhukar, IEEE Photonics Technology Letters 8, 965 (1996).Google Scholar
  21. 17.
    H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara et al., IEEE Photonics Technology Letters 12, 1385 (1995).Google Scholar
  22. 18.
    H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, Jap. J. Appl. Phys. II, Lett. 35, L903 (1996); Ibidem, Electonics Lett. 32, 2023 (1996).Google Scholar
  23. 19.
    H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett. 69, 3140 (1996)CrossRefGoogle Scholar
  24. 20.
    K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, and J. Phillips, Electronics Lett. 32, 1374 (1996).CrossRefGoogle Scholar
  25. 21.
    D. G. Deppe and H. Huang, Appl. Phys. Lett. 75, 3455 (1999).CrossRefGoogle Scholar
  26. 22.
    G. Park, O. B. Shchekin, S. Csutak, D. Huffaker, and D. G. Deppe, Appl. Phys. Lett. 75, 3267 (1999).Google Scholar
  27. 23.
    N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semicond. 32, 343 (1998).Google Scholar
  28. 24.
    K. Hinzer, J. Lapointe, Y. Feng, A. Delage, and S. Fafard, A. J. SpringThorpe and E. M. Griswold, J. Appl. Phys. 87, 1496 (2000).CrossRefGoogle Scholar
  29. 25.
    S. Fafard, K. Hinzer, A. J. SpringThorpe, Y. Feng, J. McCaffrey, S. Charbonneau, and E. M. Griswold, Material Science and Engineering 51, 114 (1998).Google Scholar
  30. 26.
    S. Fafard, J. McCaffrey, Y. Feng, C. Ni Allen, H. Marchand, L. Isnard, P. Desjardins, S. Guillon, and R. A. Masut, Proc. SPIE 3491, 272 (1998).Google Scholar
  31. 27.
    M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, Phys. Rev. B 61, 7595 (2000).Google Scholar
  32. 28.
    Z. R. Wasilewski, S. Fafard, J. P. McCaffrey, and J. Crystal Gr. 201, 1131 (1999).Google Scholar
  33. 29.
    D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).CrossRefGoogle Scholar
  34. 30.
    D. Leonard, S. Fafard, K. Pond, Y. H. Zhang, J. M. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 2516 (1994).Google Scholar
  35. 31.
    D. Leonard, M. Krishnamurthy, S. Fafard, J. M. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994).Google Scholar
  36. 32.
    J. P. McCaffrey, M. D. Robertson, Z. R. Wasilewski, E. M. Griswold, L. D. Madsen, and S. Fafard, Determination of the size, shape, and composition of indium-flushed self-assembled quantum dots by transmission electron microscopy, J. Appl. Phys. 88, 2272 (2000).CrossRefGoogle Scholar
  37. 33.
    J. M. Garcia, T. Mankad, P. O. Holtz, P. J. Wellman, and P. M. Petroff, Appl. Phys. Lett. 72, 3172 (1998).CrossRefGoogle Scholar
  38. 34.
    G. D. Lian, J. Yuan, L. M. Brown, G. H. Kim, and D. A. Ritchie, Appl. Phys. Lett. 73, 49 (1998).CrossRefGoogle Scholar
  39. 35.
    H. Saito, K. Nishi, and S. Sugou, Appl. Phys. Lett. 73, 2742 (1998); ibidem, vol 74, 1224 (1999).Google Scholar
  40. 36.
    J. P. McCaffrey, M. D. Robertson, P. J. Poole, B. J. Riel, and S. Fafard, “Interpretation and Modelling of Buried InAs Quantum Dots on GaAs and InP Substrates,” J. Appl. Phys. 90, 1784 (2001).CrossRefGoogle Scholar
  41. 37.
    J. P. McCaffrey, M. D. Robertson, Z. R. Wasilewski, S. Fafard, and L. D. Madsen. Inst. Phys. Conf. Ser. 164, 107 (1999).Google Scholar
  42. 38.
    X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, and C. Lobo, Phys. Rev. Lett. 82, 5148 (1999).CrossRefGoogle Scholar
  43. 39.
    D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Salemink, J. H. Wolter, M. Hopkinson, M. S. Skolnick, and G. S. P. A. Fei-Long, Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy, Appl. Phys. Lett. 81, 1708 (2002).CrossRefGoogle Scholar
  44. 40.
    U. Hakanson, M. K. Johansson, J. Persson, J. Johansson, M. E. Pistol, L. Montelius, and L. Samuelson, Single InP/GaInP quantum dots studied by scanning tunneling microscopy and scanning tunneling microscopy induced luminescence, Appl. Phys. Lett. 80, 494 (2002).Google Scholar
  45. 41.
    T. Yamauchi, Y. Ohyama, Y. Matsuba, M. Tabuchi, and A. Nakamura, Observation of quantum size and alloying effects of single InGaAs quantum dots on GaAs(001) by scanning tunneling spectroscopy, Appl. Phys. Lett. 79, 2465 (2001).CrossRefGoogle Scholar
  46. 42.
    P. Ballet, J. B. Smathers, H. Yang, C. L. Workman, and G. J. Salamo, Scanning tunneling microscopy investigation of truncated InP/GainP2 self-assembled islands, Appl. Phys. Lett. 77, 3406 (2000).CrossRefGoogle Scholar
  47. 43.
    T. K. Johal, R. Rinaldi, A. Passaseo, R. Cingolani, A. Vasanelli, R. Ferreira, and G. Bastard, Imaging of the electronic states of self-assembled InxGa1x As quantum dots by scanning tunneling spectroscopy, Phys. Rev. B 66, 075336 (2002).Google Scholar
  48. 44.
    K. Hinzer, M. Bayer, J. P. McCaffrey, P. Hawrylak, M. Korkusinski, O. Stern, Z. R. Wasilewski, S. Fafard, and A. Forchel, “Optical Spectroscopy of Electronic States in a Single Pair of Vertically Coupled Self-Assembled Quantum Dots”, Physica Status Solidi B 224, 385 (2001).Google Scholar
  49. 45.
    S. Fafard, M. Spanner, J. P. McCaffrey, and Z. R. Wasilewski, Appl. Phys. Lett. 76, 2268 (2000).Google Scholar
  50. 46.
    A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B 54, 5604, (1996); A. Wojs, P. Hawrylak, Solid State Comm. 100, 487 (1996).Google Scholar
  51. 47.
    P. Hawrylak, Phys. Rev. B 60, 5597 (1999); A. Wojs, P. Hawrylak, S. Fafard, L. Jacak, Physica E 2, 603 (1998).Google Scholar
  52. 48.
    S. Fafard, H. C. Liu, Z. R. Wasilewski, J. McCaffrey, M. Spanner, S. Raymond, C. Ní. Allen, K. Hinzer, J. Lapointe, C. Struby, M. Gao, P. Hawrylak, C. Gould, A. Sachrajda, and P. Zawadzki, Quantum dots devices, SPIE 4078, 100 (2000).Google Scholar
  53. 49.
    M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Hidden symmetries in the energy levels of excitonic artificial atoms, Nature 405, 923 (2000).CrossRefGoogle Scholar
  54. 50.
    R. Leon, C. Lobo, A. Clark, R. Bozek, A. Wysmolek, A. Kurpiewski, and M. Kaminska, J. Appl. Phys. 84, 248 (1998).CrossRefGoogle Scholar
  55. 51.
    R. Leon and S. Fafard, Phys. Rev. B 58, R1726, (1998).Google Scholar
  56. 52.
    S. Fafard, Z. R. Wasilewski, and M. Spanner, Appl. Phys. Lett. 75, 1866 (1999).Google Scholar
  57. 53.
    B. J. Riel, K. Hinzer, S. Moisa, J. Fraser, P. Finnie, P. Piercy, S. Fafard, Z. R. Wasilewski, and J. Cryst. Growth. 236, 145 (2002).Google Scholar
  58. 54.
    G. Wang, S. Fafard, D. Leonard, J. E. Bowers, J. M. Merz, and P. M. Petroff, Appl. Phys. Lett. 64, 2815 (1994).Google Scholar
  59. 55.
    S. Raymond, S. Fafard, S. Charbonneau, R. Leon, D. Leonard, P. M. Petroff, and J. L. Merz, Phys. Rev. B 52, 17238 (1995); J. Arlett, F. Yang, K. Hinzer, S. Fafard, Y. Feng, S. Charbonneau, R. Leon, J. Vac. Sc. Technol. B 16, 578 (1998).Google Scholar
  60. 56.
    S. Raymond, S. Fafard, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, Phys. Rev. B 54, 11548 (1996).Google Scholar
  61. 57.
    D. Morris, N. Perret, and S. Fafard, Appl. Phys. Lett. 75, 3593 (1999).CrossRefGoogle Scholar
  62. 58.
    H. Benisty, C. M. Sotomayor-Torres, and C. Weisbuch, Phys. Rev. B 44, 10945 (1991).Google Scholar
  63. 59.
    A. V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pikuhn, Appl. Phys. Lett. 72, 58 (1998).CrossRefGoogle Scholar
  64. 60.
    Al. L. Efros, V. A. Kharchenko, and M. Rosen, Solid State Commun. 93, 281 (1995).CrossRefGoogle Scholar
  65. 61.
    S. Raymond, K. Hinzer, S. Fafard, and J. L. Merz, Phys. Rev. B 61, 15 Jun. (2000).Google Scholar
  66. 62.
    T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992)Google Scholar
  67. 63.
    D. Morris, N. Perret, D. Riabinina, J. Beerens, V. Aimez, J. Beauvais, and S. Fafard, Dynamics of Photo-Excited Carriers in Self-Assembled Quantum Dots, SPIE proceedings Photonics North 2002.Google Scholar
  68. 64.
    R. Leon, P. M. Petroff, D. Leonard, and S. Fafard, Spatially Resolved Visible Luminescence of Self-Assembled Quantum Dots, Science 267, 1966 (1995).Google Scholar
  69. 65.
    M. Bayer, A. Forchel, P. Hawrylak, S. Fafard, and G. Narvaez, Excitonic states in In(Ga)As self-assembled quantum dots, Physica Stat. Sol. B 224, 331 (2001).Google Scholar
  70. 66.
    K. Hinzer, P. Hawrylak, M. Korkusinski, S. Fafard, M. Bayer, O. Stern, A. Gorbunov, A. Forchel, “Optical spectroscopy of a single AlInAs/AlGaAs quantum dot”, Phys. Rev. B 63, 75314 (2001).Google Scholar
  71. 67.
    M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, K. Klopf, and F. Schäfer, Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots, Phys. Rev. B 65, 195315-1 (2002); For further references on single quantum dot spectroscopy, see also Ref. 1 to Ref. 50 of this reference.Google Scholar
  72. 68.
    S. Fafard and C. Ní. Allen, Appl. Phys. Lett. 75, 2374 (1999).Google Scholar
  73. 69.
    Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, Large ground-to-first-excited-slate transition energy separation for InAs quantum dots emitting at 1.3 micron, Appl. Phys. Lett. 81, 1621, (2002).Google Scholar
  74. 70.
    M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Yu. M. Shernyakov, Spectrotemporal response of 1.3 micron quantum-dot lasers, Appl. Phys. Lett. 81, 3846, (2002).CrossRefGoogle Scholar
  75. 71.
    O. B. Shchekin, D. G. Deppe, 1.3 micron InAs quantum dot laser with To = 161K from 0 to 80 degrees C, Appl. Phys. Lett. 80, 3277 (2002).Google Scholar
  76. 72.
    A. Markus, A. Fiore, J. D. Ganiere, U. Oesterle, J. X. Chen, B. Deveaud, M. Ilegems, and H. Riechert, Comparison of radiative properties of InAs quantum dots and GaInNAs quantum wells emitting around 1.3 micron, Appl. Phys. Lett. 80, 911 (2002).CrossRefGoogle Scholar
  77. 73.
    Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, and L. F. Lester, High-performance InAs quantum-dot lasers near 1.3 micron, Appl. Phys. Lett. 79, 3570 (2001).Google Scholar
  78. 74.
    K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, High characteristic temperature of near-1.3-mu m InGaAs/GaAs quantum-dot lasers at room temperature, Appl. Phys. Lett. 76, 3349, (2000).CrossRefGoogle Scholar
  79. 75.
    P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, E. C. Le-Ru, and R. Murray, Optimizing the growth of 1.3 mu m InAs/GaAs quantum dots, Phys. Rev. B 64, 235317 (2001).Google Scholar
  80. 76.
    J. Tatebayashi, M. Nishioka, and Y. Arakawa, Over 1.5 micron light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor phase deposition, Appl. Phys. Lett. 78, 3469, (2000).Google Scholar
  81. 77.
    M. Sopanen, H. P. Xin, and C. W. Tu, Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs, Appl. Phys. Lett. 75, 994, (2000).Google Scholar
  82. 78.
    US patent Office, patent No. 6, 177, 684, Y. Sugiyama (2001).Google Scholar
  83. 79.
    G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photo-nics Technol. Lett. 12, 230 (2000); O. B. Shchekin, G. Park, D. L. Huffaker, and D. G. Deppe, Discrete energy level separation and the threshold temperature dependence of quantum dot lasers, Appl. Phys. Lett. 76, 466 (2000).Google Scholar
  84. 80.
    X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, and K. J. Malloy, Electron. Lett. 36, 41 (2000).Google Scholar
  85. 81.
    A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3 μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett.. 12, 591 (2000).CrossRefGoogle Scholar
  86. 82.
    R. Leon, S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, Visible Luminescence from large Semiconductor Quantum Dot Ensembles, Appl. Phys. Lett. 67, 521 (1995).CrossRefGoogle Scholar
  87. 83.
    H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs/AlGaAs quantum dots grown on a GaAs(100) substrate, Appl. Phys. Lett. 80, 3769 (2002).Google Scholar
  88. 84.
    C. Ni. Allen, P. Finnie S. Raymond, Z. R. Wasilewski, and S. Fafard, Inhomogeneous broadening in quantum dots with ternary aluminum alloys, Appl. Phys. Lett. 79, 2701 (2001).CrossRefGoogle Scholar
  89. 85.
    S. Fafard, Z. Wasilewski, J. McCaffrey, S. Raymond, and S. Charbonneau, In As Self-Assembled Quantum Dots grown by Molecular Beam Epitaxy on InP substrate, Appl. Phys. Lett. 68, 991 (1996).CrossRefGoogle Scholar
  90. 86.
    C. Ní. Allen, P. J. Poole, P. Marshall, J. Fraser, S. Raymond, and S. Fafard, Appl. Phys. Lett. 80, 3629 (2002).CrossRefGoogle Scholar
  91. 87.
    C. Paranthoen, N. Bertu, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, Height dispersion control of InAs/InP quantum dots emitting at 1.55μm, Appl. Phys. Lett. 78, 1751 (2001).CrossRefGoogle Scholar
  92. 88.
    Wang RH, Stintz A, Varangis PM, Newell T. C., Li H, Malloy K. J., and Lester L. F., IEEE Photonics Technology Letters 13, 767 (2001).Google Scholar
  93. 89.
    V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, S. V. Zaitsev, N. Yu. Gordeev, V. I. Kopchatov, N. N. Ledentsov, A. F. Tsatsul’nikov, B. V. Volovik, P. S. Kop’ev, Z. I. Alferov, S. S. Ruvimov, Z. Liliental-Weber, and D. Bimberg, Electron. Lett. 34, 670 (1998).CrossRefGoogle Scholar
  94. 90.
    H. Saito, K. Nishi, A. Kamei, and S. Sugou, IEEE Photonics Technology Letters 12, 1298 (2000).Google Scholar
  95. 91.
    T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photonics Technology Letters 11, 1527 (1999).Google Scholar
  96. 92.
    P. G. Piva, R. D. Goldberg, I. V. Mitchell, D. Labrie, R. Leon, S. Charbonneau, Z. R. Wasilewski, and S. Fafard, Enhanced Degradation Resistance of Quantum Dot Lasers to Radiation Damage, Appl. Phys. Lett. 77, 624 (2000).CrossRefGoogle Scholar
  97. 93.
    R. Leon, G. M. Swift, B. Magness, W. A. Taylor, Y. S. Tang, K. L. Wang, P. Dowd, and Y. H. Zhang, Appl. Phys. Lett. 76, 2074 (2000).Google Scholar
  98. 94.
    H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, S. Fafard, Quantum Dot Infrared Photodetectors, Appl. Phys. Lett. 78, 79 (2001).Google Scholar
  99. 95.
    A. D. Stiff-Roberts, S. Chakrabarti, S. Pradhan, B. Kochman, and P. Bhattacharya, Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors, Appl. Phys. Lett. 80, 3265 (2002).CrossRefGoogle Scholar
  100. 96.
    L. Chu, A. Zrenner, M. Bichler, and G. Abstreiter, Quantum-dot infrared photodetector with lateral carrier transport, Appl. Phys. Lett. 79, 2249 (2001).Google Scholar
  101. 97.
    R. Leon, S. Marcinkevicius, X. Z. Liao, J. Zou, D. J. H. Cockayne, and S. Fafard, Phys. Rev. B 60, R8517 (1999).Google Scholar
  102. 98.
    S. Sauvage, P. Boucaud, F. H. Julien, J. M. Gérard, and V. Thierry-Mieg, Appl. Phys. Lett. 71, 2785 (1997).Google Scholar
  103. 99.
    D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998).Google Scholar
  104. 100.
    L. Chu, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 3599 (1999).Google Scholar
  105. 101.
    F. Yang, K. Hinzer, C. Ni. Allen, S. Fafard, G. C. Aers, Yan Feng, J. McCaffrey, and S. Charbonneau, Superlattices and Microstructures 25, 419 (1999).CrossRefGoogle Scholar
  106. 102.
    M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Coupling and Entangling of Quantum States in Quantum Dot Molecules, SCIENCE 291, 451 (2001).CrossRefGoogle Scholar
  107. 103.
    P. Hawrylak, S, Fafard, and Z. Wasilewski, Engineering Quantum States in Self-Assembled Quantum Dots for Quantum Information Processing, Condensed Matter News 7, 16 (1999).Google Scholar
  108. 104.
    S. Fafard, Phys. Rev. B 50, 1961 (1994); S. Fafard, Phys. Rev. B 46, 4659 (1992).Google Scholar
  109. 105.
    T.-E. Nee, N.-T. Yeh, J.-I. Chyi, C.-T. Lee, Solid State Electronics 42, 1331 (1998).CrossRefGoogle Scholar
  110. 106.
    S. Fafard, Appl. Phys. Lett. 76, 2707 (2000).Google Scholar
  111. 107.
    S. Fafard, E. Fortin, and J. L. Merz, Phys. Rev. B 48, 11062 (1993).Google Scholar
  112. 108.
    J. Lefebvre, P. J. Poole, G. C. Aers, D. Chithrani, and R. L. Williams, Tunable emission from InAs quantum dots on InP nano-templates, J. Vac. Sci. Technol. B, 20, 2173 (2002).CrossRefGoogle Scholar
  113. 109.
    J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani, and R. L. Williams, Self-assembled InAs quantum dots on InP nano-templates, J. Cryst. Growth 234, 391 (2002).CrossRefGoogle Scholar
  114. 110.
    R. L. Williams, G. C. Aers, P. J. Poole, J. Lefebvre, D. Chithrani, and B. Lamontagne, Controlling the self-assembly of InAs/InP Quantum Dots, J. Cryst. Growth 223, 321–331 (2001).CrossRefGoogle Scholar
  115. 111.
    H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, Strain-engineered self-assembled semiconductor quantum dot lattices, Appl. Phys. Lett. 78, 105 (2001).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • Simon Fafard
    • 1
    • 2
  1. 1.Cyrium Technologies Inc.OttawaCanada
  2. 2.Department of PhysicsUniversity of OttawaOttawaCanada

Personalised recommendations