Skip to main content

Clinical Vascular Growth Factor Therapy for Neovascularization in Patients with Coronary Artery Disease

  • Chapter
Therapeutic Neovascularization–Quo Vadis?

Abstract

Several vascular growth factors have the potential to induce angiogenesis in ischemic tissue. However, only vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) have been tested in clinical studies of patients with coronary artery disease. Several small and unblinded studies with either recombinant growth factor proteins or genes encoding the growth factors have been performed in patients with severe CAD and results have been encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, a few larger double-blind randomised placebo-controlled studies have not been able to confirm the initial high efficacy of the growth factor therapy. Ongoing clinical trials with increased gene dose will demonstrate whether the used methodologies and genes are effective. In future trials one have to consider whether improved transfection vectors, combination of genes and stem cells or gene transfected cells will enhance the efficacy of the treatments. The conducted clinical studies with growth factor therapies have all been without any gene related adverse events, which supports the initiation of more large scaled clinical trials to evaluate whether vascular growth factor therapy either as a gene or recombinant slow-release protein formulation therapy could be a new treatment modality to patients with severe coronary artery disease, which cannot be treated with conventional revascularization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angiogenesis in health and disease. Basic mechanisms and clinical applications. Editor: Gabor M. Rubanyi. Marcel Dekker, Inc. 2000.

    Google Scholar 

  2. Lewis BS, Flugelman MY, Weisz A, Keren-Tal I, Schaper W. Angiogenesis by gene therapy: a new horizon for myocardial revascularization ? Cardiovascular Research 1997; 35:490–497.

    Article  PubMed  CAS  Google Scholar 

  3. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J. Pathol 2000;190:338–342.

    Article  PubMed  CAS  Google Scholar 

  4. Schaper W., Schaper J. Collateral circulation - heart, brain, kidney, limbs. Boston, Dordrecht, London: Kluwer Academic Publishers, 1993.

    Google Scholar 

  5. Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, Waksman R, Weissman NJ, Cerqueira M, Leon MB, Epstein SE. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003;41:1721–1724.

    Article  PubMed  Google Scholar 

  6. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–148.

    Article  PubMed  Google Scholar 

  7. Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004 Oct 19;44(8):1690–9.

    Article  PubMed  Google Scholar 

  8. Banai S, Jaklitsch MT, Shou M, Lazarous D, Scheinowitz M, Biro S, Epstein S, Unger E. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994; 89:2183–2189.

    PubMed  CAS  Google Scholar 

  9. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes, JF, Isner J. Therapeutic angiogenesis: a single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J Clin Invest 1994; 93:662–670.

    Article  PubMed  CAS  Google Scholar 

  10. Schumacher B, Stegmann T, Pecher P. The stimulation of neoangiogenesis in the ischemic human heart by the growth factor FGF: First clinical results. J Cardiovasc Surg 1998; 39:783–789.

    CAS  Google Scholar 

  11. Sellke FW, Laham RJ, Edelman Er et al. Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg 1998;65:1540–44.

    Article  PubMed  CAS  Google Scholar 

  12. Laham R, Sellke FW, Edelman ER, Pearlman JD, Ware A, Brown D, Gold JP, Simons M. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery. Circulation 1999; 100:1865–1871.

    PubMed  CAS  Google Scholar 

  13. Ruel M, Laham RJ, Parker JA et al. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J thorac Cardiovasc Surg 2002;124:28–34.

    Article  PubMed  CAS  Google Scholar 

  14. Laham RJ, Chronos NA, Marilyn P et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with ischemic heart disease: Results of a Phase I open-label dose escalation study. J Am Coll Cardiol 2000;36:2132–2139.

    Article  PubMed  CAS  Google Scholar 

  15. Unger EF, Goncalves L, Epstein SE, Chew Ey, Trapnell CB, Cannon RO 3rd, Quyyumi AA. Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 2000;85:1414–19.

    Article  PubMed  CAS  Google Scholar 

  16. Simons M, Annex BH, Laham RJ et al. Pharmacological treatment of coronary artery disease with recombinant fibroblaft growth factor-2. Double-blind, randomized, controlled clinical trial. Circulation 2002;105:788–793.

    Article  PubMed  CAS  Google Scholar 

  17. Hendel RC, Henry TD, Rocha-Singh K, Isner J, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 2000;101:118–121.

    PubMed  CAS  Google Scholar 

  18. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER for the VIVA Investigators. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation. 2003 Mar 18;107(10):1359–65.

    Article  PubMed  CAS  Google Scholar 

  19. Sato K, Laham RJ, Pearlman JD et al. Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 2000;70:2113–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lederman RJ, Mendelsohn FO, Anderson RD et al. Therapeutic angiogenesis with recombinant fibroblast growth factor- for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 2002;358:2053–58.

    Article  Google Scholar 

  21. Rajagopalan S, Mohler ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease. A phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003,108:87–92.

    Article  CAS  Google Scholar 

  22. Laitinen M, Hartikainen J, Hiltunen MO, Eränen J, Kiviniemi M, Närvänen O, Mäkinen K, Manninen H, Syvänne M, Martin JF, Laakso M, Ylä-Herttuala. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Human Gene Therapy 2000; 11:263–270.

    Article  PubMed  CAS  Google Scholar 

  23. Hedman M, Hartikainen J, Syvänne M, Stjernvall J, Hedman A, Kivelä A, Vanninen E, Mussalo H, Kauppila E, Simula S, Närvänen O, Rantala A, Peuhkurinen K, Niemenen MS, Laakso M, Ylä-Herttuala S. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia. Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003;107:2677–83.

    Article  PubMed  CAS  Google Scholar 

  24. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD, West A, Rade JJ, Marrott P, Hammond HK, Engler RL. Angiogenic gene therapy (AGENT) trial in pateints with stable angina pectoris. Circulation 2002;105:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  25. Grines CL, Watkins MW, Mahmarian JJ, Iskandrian AE, Rade JJ, Marrott P, Pratt C, Kleiman N for the Angiogenic GENe Therapy (Agent-2) study group. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. Journal of the American College of Cardiology 2003;42:1339–47.

    Google Scholar 

  26. Kastrup, J, Jørgensen, E, Drvota, V, Thuesen, L, Bøtker, H.E, Gyöngyösi, M, Glogar, D, Rück, A, Islam, K.B, Sylvén C, and the Euroinject One group. Intramyocardial injection of genes by a novel percutaneous technique. Initial safety data in the Euroinject One study. Heart/Drug 2001;1:299–304.

    CAS  Google Scholar 

  27. Symes JF, Losordo DW, Vale PR, Lathi KG, Esakof DD, Maysky M, Isner J. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999; 68:830–837.

    Article  PubMed  CAS  Google Scholar 

  28. Sylvén C, Sarkar N, Rück A, Drvota V, Y-Hasan S, Lind B, Nygren A, Källner G, Blomberg P, van der Linden J, Lindblom D, Brodin LÅ, Islam K. Myocardial doppler tissue velocity improves following myocardial gene therapy with VEGF-A165 plasmid in patients with inoperable angina pectoris. Coron Artery Dis 2001;12:239–243.

    Article  PubMed  Google Scholar 

  29. Sarkar N, Rück A, Källner et al. Effects of intra myocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease – 12 months follow-up: Angiogenic gene therapy.

    Google Scholar 

  30. Rosengart T, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergmann GW, Hachamovitch R, Szule M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom W, Crystal RG. Angiogenesis gene therapy. Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically signifikant severe coronary artery disease. Circulation 1999; 100:468–474.

    PubMed  CAS  Google Scholar 

  31. Stewart DJ, Arnold JMO, Gregoire J, Rivard A, Archer SL, Charbonneau, Cohen E, Curtis M, Buller CE, Mendelsohn FO, Dib N, Page P, Ducas J, Plante S, Sullivan J, Macko J, Rasmussen J, PD Kessler, Rasmussen HS. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF121 (AdVEGF121) versus maximum medical treatment. Gene Therapy advance online publication, 22 June 2006.

    Google Scholar 

  32. Vale PR, Losordo DW, Milliken CE et al. Randomised, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients chronic myocardial ischemia. Circulation 2001;103:2138–2143.

    PubMed  CAS  Google Scholar 

  33. Losordo DW, Vale PR, Hendel RC et al. Phase ½ placebo-controlled, doubleblind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002;105:2012–2018.

    Article  PubMed  CAS  Google Scholar 

  34. Tio RA, Tan ES, Jessurun GA, Veeger N, Jager PL, Slart RH de Jong RM, Pruim J, Hospers, GA, Willemsen AT, de Jongste MJ, van Bowen AJ, van Veldhuisen DJ, Zijlstra F. PET for evaluation of differential myocardial perfusion dynamics after VEGF gene therapy and laser therapy in end-stage coronary artery disease. J Nucl Med 2004;45(9):1437–43.

    PubMed  Google Scholar 

  35. Kastrup J, Joergensen E, Rück A, Tägil K, Glogar D, Gyöngyösi M, Ruzyllo W, Bøtker HE, Dudek D, Drvota V, Hesse B, Thuesen L, Blomberg P, Sylvén C, for the Euroinject One Group. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable angina pectoris – A randomized double-blind placebo-controlled study. The Euroinject One Trial. Journal of American College of Cardiology. 2005;45:982–8.

    Article  CAS  Google Scholar 

  36. Gyöngyösi M, Khorsand A, Zamini S, Sperker W, Strehblow C, Kastrup J, Joergensen E, Hesse B, Tägil K, Bøtker HE, Ruzyllo W, Teresiñska, Dudek D, Hubalewska A, Rück A, Graf S, Mundigler G, Novak J, Sochor H, Maurer G, Glogar D, Sylvén C. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding VEGF A-165 in patients with chronic myocardial ischemia. Subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation Research. Circulation 2005;112 [Suppl I];I-157-I-165.

    Google Scholar 

  37. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634–637.

    PubMed  CAS  Google Scholar 

  38. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001;98:10344–10349.

    Article  PubMed  CAS  Google Scholar 

  39. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–148.

    Article  PubMed  Google Scholar 

  40. Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004;44:1690–1699.

    Article  PubMed  Google Scholar 

  41. Kuethe F, Richartz BM, Sayer HG, Kasper C, Werner GS, Hoffken K, Figulla HR. Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol 2004;97:123–127.

    Article  PubMed  Google Scholar 

  42. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–46.

    Article  PubMed  Google Scholar 

  43. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302.

    Article  PubMed  Google Scholar 

  44. Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, Waksman R, Weissman NJ, Cerqueira M, Leon MB, Epstein SE. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003;41:1721–1724.

    Article  PubMed  Google Scholar 

  45. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–1918.

    Article  PubMed  Google Scholar 

  46. Wang Y, Tägil K, Ripa RS, Nilsson JC, Carstensen S, Jørgensen E, Sondergaard L, Hesse B, Johnsen HE, Kastrup J. Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int J Cardiol 2005;100:477–483.

    Article  PubMed  Google Scholar 

  47. Hill JM, Syed MA, Arai AE, Powell TM, Paul JD, Zalos G, Read EJ, Khuu HM, Leitman SF, Horne M, Csako G, Dunbar CE, Waclawiw MA, Cannon RO, III. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005;46:1643–1648.

    Article  PubMed  CAS  Google Scholar 

  48. Ripa RS, Jørgensen E, Wang Y, Thune JJ, Nilsson JC, Søndergaard L, Johnsen HE, Køber L, Grande P, Kastrup J. Stem Cell Mobilization Induced by Subcutaneous Granulocyte-Colony Stimulating Factor to Improve Cardiac Regeneration After Acute ST-Elevation Myocardial Infarction. Result of the Double-Blind, Randomized, Placebo-Controlled Stem Cells in Myocardial Infarction (STEMMI) Trial. Circulation 2006;113:1983–1992.

    Article  PubMed  CAS  Google Scholar 

  49. Kawamoto A, Murayama T, Kusano K, Ii M, Tkebuchava T, Shintani S, Iwakura A, Johnson I, von Samson P, Hanley A, Gavin M, Curry C, Silver M, Ma H, Kearney M, Losordo DW. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 2004;110:1398–1405.

    Article  PubMed  CAS  Google Scholar 

  50. Ripa R, Wang Y, Jørgensen E, Johnsen HE, Hesse B, Kastrup J. Direct intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor treatment to mobilize stem cells and promote myocardial homing to induce angiogenesis in patients with severe chronic ischemic heart disease. Eur Heart J. 2006 Aug;27(15):1785–92. Epub 2006 Jul 6

    Article  PubMed  CAS  Google Scholar 

  51. Isner JM, Vale PR, Symes JF, Losordo DW. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res 2001;89:389–400.

    PubMed  CAS  Google Scholar 

  52. Wang Y, Johnsen HE, Mortensen S, Bindslev L, Ripa RS, Haack-Sorensen M et al. Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart. 2006;92(6):768–74.

    Article  PubMed  CAS  Google Scholar 

  53. Wang Y, Gabrielsen A, Lawler PR, Paulsson-Berne G, Steinbrüchel DA, Hansson GK, Kastrup J. Myocardial gene expression of angiogenic factors in human chronic ischemic myocardium - Influence of acute ischemia/cardioplegia and reperfusion. Microcirculation 2006:13:187–97.

    Article  PubMed  CAS  Google Scholar 

  54. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004;110:3300–3305.

    Article  PubMed  Google Scholar 

  55. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004;109:2454–2461.

    Article  PubMed  CAS  Google Scholar 

  56. Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X, Hu J. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology 2007;107:17–29.

    Article  PubMed  Google Scholar 

  57. Yau TM, Kim C, Ng D, Li G, Zhang Y, Weisel RD, Li R-K. Increased transplanted cell survival with cell-based angiogenic gene therapy. Ann Thorac Surg 2005;80:1779–86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kastrup, J. (2007). Clinical Vascular Growth Factor Therapy for Neovascularization in Patients with Coronary Artery Disease. In: Deindl, E., Kupatt, C. (eds) Therapeutic Neovascularization–Quo Vadis?. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5955-8_1

Download citation

Publish with us

Policies and ethics