Skip to main content

A Biological Rationale for the Cardiotoxic Effects of Rofecoxib

Comparative analysis with other COX-2 selective agents and NSAIDs

  • Chapter
Inflammation in the Pathogenesis of Chronic Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 42))

Clinical investigations have demonstrated a relationship between the extended use of rofecoxib and increased risk for atherothrombotic events. This has led to the removal of rofecoxib from the market and explicit cardiovascular safety warnings for other COX-2 selective and non-selective agents that remain on the market. Early explanations for the cardiotoxicity of rofecoxib, such as the relative cardioprotective effect of comparator agents (naproxen) or an ‘‘imbalance’’ between thromboxane and prostacyclin biosynthesis due to an absence of concomitant aspirin use, have not been substantiated by the evidence. New experimental findings indicate that the cardiotoxicity of rofecoxib is not a general class effect but may be due to its intrinsic chemical structure and unique primary metabolism. Specifically, rofecoxib has been shown to increase the susceptibility of human LDL and cell membrane lipids to oxidative modification, a hallmark feature of atherosclerosis. Rofecoxib was also found to promote the non-enzymatic formation of isoprostanes from biological lipids, which act as important mediators of inflammation in the atherosclerotic plaque. The explanation for such cardiotoxicity is that rofecoxib forms a reactive maleic anhydride in the presence of oxygen due to its chemical structure and primary metabolism (cytoplasmic reductase). By contrast, adverse effects on rates of LDL and membrane lipid oxidation were not observed with other chemically distinct (sulfonamide) COX-2 inhibitors under identical conditions. These findings provide a compelling rationale for distinguishing the differences in cardiovascular risk among COX-selective inhibitors on the basis of their intrinsic physico-chemical properties

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bombardier C, Laine L, Reicin A, Group. fTVS. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med. 2000;343:1520–1528.

    Article  PubMed  CAS  Google Scholar 

  2. Silverstein FE, Faich G, Goldstein JL, Simon LS, Pincus T, Whelton A, Makuch R, Eisen G, Agrawal NM, Stenson WF, Burr AM, Zhao WW, Kent JD, Lefkowith JB, Verburg KM, Geis GS. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the Celecoxib Long-Term Arthritis Safety Study (CLASS): a randomized control trial. JAMA. 2000;284:1247–1255.

    Article  PubMed  CAS  Google Scholar 

  3. Schoenbeck U, Sukhova GK, Graber P, Coulter S, Libby P. Augmented expression of cyclo- oxygenase-2 in human atherosclerotic lesions. Am. J. Pathol. 1999;155:1281–1291.

    Google Scholar 

  4. Baker CS, Hall RJ, Evans TJ, Pomerance A, Maclouf J, Creminon C, Yacoub MH, Polak JM. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotryrosine particularly in macrophages. Arterioscler. Thromb. Vasc. Biol. 1999;19:646–655.

    PubMed  CAS  Google Scholar 

  5. Pitt B, Pepine CJ, Willerson JT. Cyclooxygenase-2 inhibition and cardiovascular events. Circulation. 2002;106:167–169.

    Article  PubMed  Google Scholar 

  6. Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 2005;352:1092–1102.

    Article  PubMed  CAS  Google Scholar 

  7. FitzGerald GA, Smith B, Pedersen AK, Brash AR. Increased prostacylin biosynthesis in patients with severe atherosclerosis and platelet activation. N. Engl. J. Med. 1984;310:1065–1068.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science. 2002;296:539–541.

    Article  PubMed  CAS  Google Scholar 

  9. Mukherjee D, Nissen ST, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2000;286:954–959.

    Article  Google Scholar 

  10. Ray WA, Stein CM, Daugherty JR, Hall K, Arbogast PG, Griffin MR. COX-2 selective non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease. Lancet. 2002;360:1071–1073.

    Article  PubMed  CAS  Google Scholar 

  11. Solomon DH, Schneeweiss S, Glynn RJ, Kiyota Y, Levin R, Mogun H, Avorn J. Relationship between selective cyclooxygenase-2 inhibitors and acute myocardial infarction in older adults. Circulation. 2004;109:2068–2073.

    Article  PubMed  CAS  Google Scholar 

  12. Mamdani M, Juurlink DN, Lee DS, Rochon PA, Kopp A, Nagile G, Austin PC, Laupacis A, Stukel TA. Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: A population-based cohort study. The Lancet. 2004;363:1751–1756.

    Article  CAS  Google Scholar 

  13. Juni P, Nartey L, Reichenbach S, Sterchi R, Dieppe PA, Egger M. Risk of cardiovascular events and rofecoxib: cumulative meta-analysis. Lancet. 2004;364:2021–2029.

    Article  PubMed  CAS  Google Scholar 

  14. Graham DJ, Campen D, Hui R, Spence M, Cheetham C, Levy G, Shoor S, Ray WA. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet. 2005;365:475–481.

    PubMed  CAS  Google Scholar 

  15. Solomon SD, McMurray JJV, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 2005;352:1071–1080.

    Article  PubMed  CAS  Google Scholar 

  16. Caughey GE, Cleland LG, Gamble JR, James MJ. Up-regulation of endothelial cyclooxygenase-2 and prostanoid synthesis by platelets: role of thromboxane A2. J. Biol. Chem. 2001;276:37839–37845.

    PubMed  CAS  Google Scholar 

  17. Chan AT, Manson JE, Albert CM, Chae CU, Rexrode KM, Curhan GC, Rimm EB, Willett WC, Fuchs CS. Nonsteroidal antiinflammatory drugs, acetaminophen, and the risk of cardiovascular events. Circulation. 2006;113:1578–1587.

    Article  PubMed  CAS  Google Scholar 

  18. Hermann M, Shaw S, Kiss E, Camici G, Buhler N, Chenevard R, Luscher TF, Grone HJ, Ruschitzka F. Selective COX-2 inhibitors and renal injury in salt-sensitive hypertension. Hypertension. 2005;45:193–197.

    Article  PubMed  CAS  Google Scholar 

  19. Hermann M, Camici G, Fratton A, Hurlimann D, Tanner FC, Hellermann JP, Fiedler M, Thiery J, Neidhart M, Gay RE, Gay S, Lüscher TF, Ruschitzka F. Differential effects of selective cyclooxygenase-2 inhibitors on endothelial function in salt-induced hypertension. Circulation. 2003;108:2308–2311.

    Article  PubMed  CAS  Google Scholar 

  20. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proc Natl Acad Sci U S A. 1999;96:7563–7568.

    Article  PubMed  CAS  Google Scholar 

  21. Chenevard R, Hurlimann D, Bechir M, Enseleit F, Spieker L, Hermann M, Riesen W, Gay S, Gay RE, Neidhart M, Michel B, Luscher TF, Noll G, Ruschitzka F. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation. 2003;107:405–409.

    Article  PubMed  Google Scholar 

  22. Vane JR. Back to an aspirin a day? Science. 2002;296:474–475.

    Article  PubMed  CAS  Google Scholar 

  23. Brune K, Hinz B. Selective cyclooxygenase-2 inhibitors: similarities and differences. Scand. J. Rheumatol. 2004;33:1–6.

    Article  PubMed  CAS  Google Scholar 

  24. Tang C, Shou M, Mei Q, Rushmore TH, Rodrigues AD. Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J. Pharmacol. Exp. Ther. 2000;293:453–459.

    PubMed  CAS  Google Scholar 

  25. Slaughter D, Takenaga N, Lu P, Assang C, Walsh DJ, Arison BH, Cui D, Halpin RA, Geer LA, Vyas KP, Baillie TA. Metabolism of rofecoxib in vitro using human liver subcellular fractions. Drug Metab Dipos. 2003;31:1398–1408.

    Article  CAS  Google Scholar 

  26. Reddy LR, Corey EJ. Facile air oxidation of the conjugate base of rofecoxib (Vioxx), a possible contributor to human toxicity. Tetrahedron Letters. 2005;46:927–929.

    Article  CAS  Google Scholar 

  27. Walter MF, Jacob RF, Day CA, Dahlborg R, Weng Y, Mason RP. Sulfone COX-2 inhibitors increase susceptibility of human LDL and plasma to oxidative modification: Comparison to sulfonamide COX-2 inhibitors and NSAIDs. Atherosclerosis. 2004;177:235–243.

    Article  PubMed  CAS  Google Scholar 

  28. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that incease its atherogenicity. N. Engl. J. Med. 1989;320:915–924.

    Article  PubMed  CAS  Google Scholar 

  29. Steinbrecher UP, Lougheed M, Kwan WC, Dirks M. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J. Biol. Chem. 1989;264:15216–15223.

    PubMed  CAS  Google Scholar 

  30. Witztum JL, Berliner JA. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol. 1998;9:441–448.

    Article  PubMed  CAS  Google Scholar 

  31. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997;272:20963–20966.

    Article  PubMed  CAS  Google Scholar 

  32. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler. Thromb. Vasc. Biol. 2002;22:1649–1654.

    Article  PubMed  CAS  Google Scholar 

  33. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955.

    PubMed  CAS  Google Scholar 

  34. Walter MF, Jacob RF, Jeffers B, Ghadanfar MM, Preston GM, Buch J, Mason RP. Serum levels of TBARS predict cardiovascular events in patients with stable coronary artery disease: A longitudinal analysis of the PREVENT study. J. Am. Coll. Cardiol. 2004;44:1996–2002.

    Article  PubMed  CAS  Google Scholar 

  35. Pratico D, Iuliano L, Mauriello A, Spagnoli L, Lawson JA, Rokach J, Maclouf J, Violi F, FitzGerald GA. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J. Clin. Invest. 1997;100:2028–2034.

    Article  PubMed  CAS  Google Scholar 

  36. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem. 2002;50:1815–1821.

    Article  PubMed  CAS  Google Scholar 

  37. Mason RP, Jacob RF. X-ray diffraction analysis of membrane structure changes with oxidative stress. In: Armstrong D, ed. Methods in Molecular Biology: Ultrastructural and Molecular Biology Protocols. Totowa, NJ: Humana Press Inc.; 2002:71–80.

    Google Scholar 

  38. Tulenko TN, Chen M, Mason PE, Mason RP. Physical effects of cholesterol on arterial smooth muscle membranes: Evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J. Lipid. Res. 1998;39:947–956.

    PubMed  CAS  Google Scholar 

  39. Mason RP, Walter MF, Mason PE. Effect of oxidative stress on membrane structure: Small angle x-ray diffraction analysis. Free Radic. Biol. Med. 1997;23:419–425.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mason, R.P., Walter, M.F., Day, C.A., Jacob, R.F. (2007). A Biological Rationale for the Cardiotoxic Effects of Rofecoxib. In: Harris, R.E., et al. Inflammation in the Pathogenesis of Chronic Diseases. Subcellular Biochemistry, vol 42. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5688-5_8

Download citation

Publish with us

Policies and ethics