Skip to main content

Airlift Reactors: Characterization And Applications In Biohydrometallurgy

  • Chapter
Microbial Processing of Metal Sulfides

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo F, Cacciuttolo MA, Gentina JC. 1988. Comparative Performance of Stirred and Pachuca Tanks in the Bioleaching of a Copper Concentrate. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Kew Surrey.

    Google Scholar 

  • Acevedo F. 2000. The use of reactors in biomining processes. Electronic J Biotechnol 3: 184-194. Available from: www.ejbiotechnology.info

    Google Scholar 

  • Acevedo F, Gentina JC. 2005. Biolixiviación de minerales de oro. Acevedo F, Gentina JC, eds, Fundamentos y perspectivas de las tecnologías biomineras. Ediciones Universitarias de Valparaíso, Valparaíso, Chile, 79-91.

    Google Scholar 

  • Aprea JL, Giaveno MA, Chiacchiarini PA, Lavalle TL, de la Fuente MV. 1997. Air lift reactor implementation for bioleaching of low grade copper ores. In: Proceedings of the International Biohydrometallurgy Symposium, Biomine IBS-97, August 4-6. Australian Mineral Foundation Inc., Sydney. Glenside, Australia.

    Google Scholar 

  • Atkins A, Pooley F, Townsley C. 1986. Comparative mineral sulphide leaching in shake flasks, percolation columns, and Pachuca reactors using Thiobacillus ferrooxidans.Process Biochem 21: 3-10.

    CAS  Google Scholar 

  • Bailey AD, Hansford GS. 1993. Factors affecting bio-oxidation of sulphide minerals at high concentrations of solids: a review. Biotechnol Bioeng 42: 1164-1174.

    Article  CAS  Google Scholar 

  • Beyer M, Ebner H, Assenmacher H, Frigge J. 1987. Elemental sulphur in microbiologically desulphurized coals Fuel 66: 551-555.

    Article  CAS  Google Scholar 

  • Blažej M, Kiša M, Markoš J. 2004. Scale influence on the hydrodynamics of an internal loop airlift reactor. Chem Eng Proces 43: 1519–1527.

    Article  CAS  Google Scholar 

  • Bos P, Huber TF, Kos CH, Ras C, Kuenen JG. 1986. A Dutch feasibility study on microbial coal desulphurization. In Lawrence RD, Branion RMR, Ebner HG, Ritcey GM. Process Metallurgy. Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, 385-394.

    Google Scholar 

  • Brierley CL. 1997. Heap leaching of Gold-Bearing Deposits: Theory and Operational Description. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 103-115.

    Google Scholar 

  • Brierley JA, Brierley CL. 1999. Present and Future Commercial Applications of Biohydrometallurgy. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 81-90.

    Google Scholar 

  • Chappell MJ, Godfrey KR. 1990. Global identificability of the parameters of Nonlinear Systems with specified inputs: a comparison of methods. Mathematical Biosciences 102: 41-73.

    Article  MATH  PubMed  CAS  Google Scholar 

  • Chaudhury GR, Das RP. 1987. Bacterial leaching- complex sulfides of copper, lead and zinc. Int J Min Proces 21: 57-64.

    Article  CAS  Google Scholar 

  • Chisti MY. 1989. Airlift Bioreactors. Elsevier Applied Science. New York.

    Google Scholar 

  • Chisti MY. 1998. Pneumatically agitated bioreactors in industrial and environmental bioprocessing: Hydrodynamics, hydraulics and transport phenomena. Appl Mechanics Rev 51: 33-112.

    Google Scholar 

  • Chisti MY, Moo-Young M. 2002. Bioreactors. Meyers, RA, ed. Encyclopedia of Physical Science and Technology. Academic Press, San Diego, vol. 2, 247-271.

    Google Scholar 

  • Chisti MY. 2005. Mass transfer. Kirk-Othmer Eds. Kirk-Othmer Encyclopedia of Chemical Technology, 5th edition. Wiley, New York, vol. 15, 1–75.

    Google Scholar 

  • Choi K, Chisti MY, Moo-Young M. 1995. Split-channel rectangular airlift reactors: Enhancement of performance by geometric modifications. Chem Eng Commun 138: 171-181.

    CAS  Google Scholar 

  • Clark NN. 1984. Predicting the Circulation Rate in Pachuca Tanks with Full Height Draft Tubes. Minerals and Metallurgical Processing 226-231.

    Google Scholar 

  • Contreras A, García F, Molina E, Merchuk J. 1999. Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor. Enzyme Microb Technol 25: 820–830.

    Article  CAS  Google Scholar 

  • Couillard D, Mercier G. 1991. Optimum residence time (in CSTR and Airlift Reactor) for bacterial leaching metals from anaerobic sewage sludge. Water Res. 25: 211-218.

    Article  CAS  Google Scholar 

  • Crundwell F. 1997. The kinetics of the chemiosmotic proton circuit of the iron-oxiding bacterium Thiobacillus ferrooxidans. Bioelectrochem Bioenerg 43: 115-122.

    Article  CAS  Google Scholar 

  • De Gloria P, Ferrari D, Grosso M, Olivieri M, Puglisi I., 1999. Implementation Techniques and Their Applications Ed. by Leondes C. Fuzzy Theory Systems, Techniques and Applications. Academic Press, USA, chapter 1, 19-50.

    Google Scholar 

  • Deveci H. 2004. Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors. Hydrometallurgy 71: 385-396.

    Article  CAS  Google Scholar 

  • Escobar B, Godoy Y, Pardo E, Wiertz JV. 1995. Bioleaching of copper by Thiobacillus ferrooxidansat incresing pulp density. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile, Vol 1, 273-281.

    Google Scholar 

  • Gatti M, Milocco R, Giaveno A. 2003. Modeling the bacterial oxidation of ferrous iron with Acidithiobacillus ferrooxidansusing Kriging interpolation. Hydrometallurgy 71: 89-96.

    Article  CAS  Google Scholar 

  • Giaveno MA, Chiacchiarini PA, Lavalle TL, de la Fuente MV, Aprea JL. 1995. Bioleaching of patagonic copper ores in flask and percolating columns. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile, Vol 1, 343-350.

    Google Scholar 

  • Giaveno MA, Chiacchiarini PA, Lavalle TL, Donati ER. 2005. Reversed flow airlift reactor characterization for bioleaching applications. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 83-85.

    Google Scholar 

  • Gómez JM, Caro I, Cantero D. 1996. Kinetic equation for growth of Thiobacillus ferrooxidansin submerged culture over aqueous ferrous sulphate solutions. J Biotechnol 48: 147-152.

    Article  Google Scholar 

  • Hadaddin J, Dagot C, Fick M. 1995. Models of bacterial leaching. Enzyme Microb Technol 17: 290-305.

    Article  Google Scholar 

  • Jones L, Hackl R. 1999. Sources of high cyanide consumption for a biooxidized refractory gold concentrate. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 337-346.

    Google Scholar 

  • Koide K, Horibe K, Kawabata H, Ito S. 1984. Critical gas velocity required for complete suspension of solid particles in solid-suspended bubble column with draught tube. J Chem Eng Japan 17: 368-374.

    CAS  Google Scholar 

  • Koide K, Sato H, Iwamoto S. 1983. Gas holdup and volumetric liquid-phase mass transfer coefficient in bubble column with draught tube and with gas dispersion into annulus. J Chem Eng Japan 16: 407-413.

    CAS  Google Scholar 

  • Kurtanjek Ž. 1994. Modeling and Control by Artificial Neural Network in Biotechnology. Comp Chem Eng 18: S627-S631.

    Article  Google Scholar 

  • Lavalle TL, Chiacchiarini PA, Pogliani C, Donati ER. 2005. Iat solation and characterization of acidophilic bacteria from Patagonia, Argentina. Process Biochem 40: 1095-1099.

    Article  CAS  Google Scholar 

  • Lizama HM, Fairweather MJ, Dai Z, Allegretto TD. 2003. How does bioleaching start? Hydrometallurgy 69: 109-116.

    Article  CAS  Google Scholar 

  • Loi G, Trois P, Rossi G. 1995. Biorotor mbox textregistered: a New Development for Biohydrometallurgical Processing. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile,Vol 1, 263-272.

    Google Scholar 

  • Merchuk JC. 1986. Hydrodynamics and hold-up in air-lift reactors. In: Cheremisinoff NP, ed. Encyclopedia of Fluid Mechanics. NP Gulf Publishing Company, Houston, Texas, USA, 1487-1511.

    Google Scholar 

  • Merchuk J, Siegel M. 1988. Air-Lift reactors in chemical and biological technology. J Chem Technol Biotechnol 41: 105-120.

    Article  CAS  Google Scholar 

  • Merchuk J. 1990. Why use airlift bioreactors? Tibtech 8: 66-71

    Google Scholar 

  • Merchuk J, Ben-Zvi S, Keskhavan N. 1994. Why use bubble-column bioreactors? Tibtech 12: 501-511

    CAS  Google Scholar 

  • Merchuk J, Berzin I. 1995. Distribution of energy dissipation in airlift reactor. Chem Eng Sci 50: 2225-2233

    Article  CAS  Google Scholar 

  • Merchuk JC, Contreras A, García F, Molina E. 1998. Studies of mixing in a concentric tube airlift bioreactor with different spargers. Chem Eng Sci 53: 709-719.

    Article  CAS  Google Scholar 

  • Morin D, Lips A, Pinches A, Huisman J, Frias C, Norberg A, Forssberg E. 2005. BioMinE integrated project for the development of biotechnology for metal-bearing materials in Europe. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 23-40.

    Google Scholar 

  • Mousavi S, Yaghmaei S, Vossoughi M, Jafari A, Hoseini S. 2005. Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift biorreactor. Hydrometallurgy 80: 139-144.

    Article  CAS  Google Scholar 

  • Nemati M, Webb CA. 1997. Kinetic Model for Biological Oxidation of Ferrous Iron by Thiobacillus ferrooxidans. Biotechnol Bioeng 53: 478-486.

    Article  CAS  Google Scholar 

  • Nemati M, Harrison S, Hansford G, Webb C. 1998. Biological oxidation of ferrous sulfate by Thiobacillus ferrooxidans:a review on the kinetic aspects. Biochem Eng J 1: 171-190.

    Article  CAS  Google Scholar 

  • Ojumu T, Petersen J, Searby G, Hansford G. 2005.at A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29 , Cape Town, South Africa. Produced by Compress www.compress.co.za, 85-93.

    Google Scholar 

  • Okibe N, Gericke M, Hallberg K, Johnson B. 2003. Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation. Appl Environ Microbiol 69: 1936–1943.

    Article  PubMed  CAS  Google Scholar 

  • Onken U, Weiland P. 1983. Airlift fermenters: Construction, Behavior and Uses. Mizrahi A, van Wezel A, eds. Advances in Biotechnological Processes. Alan R Liss Inc, New York, 67-95.

    Google Scholar 

  • Park D, Lee D, Joung J, Park J. 2005. Comparison of different bioreactor systems for indirect H 2S removal using iron-oxidizing bacteria. Process Biochem 40: 1464-1467.

    Google Scholar 

  • Rawlings DE. 1997. Mesophilic, autotrophic bioleaching bacteria: Description, physiology and role. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 229-245.

    Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS. 1999. Reasons why “Leptospirillum” –like species rather than Thiobacillus ferrooxidansare dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pytite and related ores. Microbiology 145: 5-13.

    Article  PubMed  CAS  Google Scholar 

  • Rossi G. 2001. The design of bioreactors. Hydrometallurgy 59: 217-231.

    Article  CAS  Google Scholar 

  • Roy GG, Sheckhar R. 1996. Oxygen mass transfer in air-agitated Pachuca tanks -Part 1: Laboratory-scale experimental measurements. Part 2: mathematical modelling of mass-transfer coefficients. Transactions of the Institution of Miningand Metallurgy 105 - Section C: 9-21.

    Google Scholar 

  • Roy CG, Bera A, Mankar JH. 2000. Effect of design and operating parameters on gas hold up in Pachuca (air agitated) tanks, Transactions of the Institution of Mining and Metallurgy 109 - Section C: 90-96.

    Google Scholar 

  • Ruitenberg R, Schultz C, Buisman C. 2001. Bio-oxidation of minerals in air-lift loop bioreactors. Int J Min Proces 62: 271-278.

    Article  CAS  Google Scholar 

  • Ryu H, Chang Y, Kim S. 1993. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferrooxidans.Fuel Proces Technol 36: 267-275.

    Article  CAS  Google Scholar 

  • Sánchez Mirón A, Cerón García MC, García Camacho F, Molina Grima E, Chisti Y. 2004. Mixing in bubble column and airlift reactors. Chem Eng Res Design 82: 1367–1374.

    Article  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A. 1999. Direct versus indirect bioleaching. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 27-49.

    Google Scholar 

  • Sand W, Gehrke T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157: 49-56.

    Article  PubMed  CAS  Google Scholar 

  • Shrihari SRB, Kumar R, Gandhi KS. 1990. Modelling of Fe + 2oxidation by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 33: 524-528.

    CAS  Google Scholar 

  • Siegel M, Hallaile M, Merchuck J. 1988. Air-Lift reactors: Design, operation and applications. Adv Biotechnol Processes 7: 79-124.

    Google Scholar 

  • Siegel M, Robinson C. 1992. Applications of airlift gas-liquid-solid reactors in biotechnology. Chem Eng Sci 47: 3215-3229.

    Article  CAS  Google Scholar 

  • Silverman M, Lundgren D. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I .An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77: 642–647.

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Fang Z. 2005. Bioleaching of marmatite flotation concentrate by adapted mixed cultures in an air-lift reactor. Min Proces 76: 3-12.

    Article  CAS  Google Scholar 

  • Schügerl K, Lübbert A. 1995. Pneumatically agitated bioreactors. Asenjo J, Merchuck J, eds. Bioreactor system design. Marcel Dekker Inc, 257-303.

    Google Scholar 

  • Tipre D, Vora S, Dave S. 2003. Comparison of air lift and stirred tank batch and semicontinuous bioleaching of polymetallic bulk concentrate. Tsezos M, Hatzikioseyian A, Remoudaki E, eds. Proceedings of the International Biohydrometallurgy Symposium, IBS-03, Athens, Greece, 21-29.

    Google Scholar 

  • Tyagi R, Couilliard D, Tran F. 1991. Comparative study of bacterial leaching of metals from sewage sludge in continuous stirred tank and air-lift reactors. Process Biochem 26: 47-54.

    Article  CAS  Google Scholar 

  • Vi n als J. 2000. Cinética de las reacciones heterogeneas. Ballester A, Verdeja L, Sancho J, eds, Metalurgia Extractiva. Editorial Síntesis, Espa n a, Vol. 1, 169-198.

    Google Scholar 

  • Whitlock JL. 1997. Biooxidation of Refractory Gold Ores (The Geobiotics Process). In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 117-127.

    Google Scholar 

  • Wu W, Wu J. 1990. Airlift Reactor with Net Draught Tube. J Ferment Bioeng 70: 359-361.

    Article  Google Scholar 

  • Znada H, Báleš V, Markoš J, Kawase Y. 2004. Modeling and simulation of airlift bioreactors. Biochem Eng J 21: 73–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Giaveno, A., Lavalle, L., Patricia, C., Donati, E. (2007). Airlift Reactors: Characterization And Applications In Biohydrometallurgy. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_9

Download citation

Publish with us

Policies and ethics