Skip to main content

Bioreactor Design Fundamentals And Their Application To Gold Mining

  • Chapter

Keywords

  • Oxygen Uptake Rate
  • Continuous Stir Tank Reactor
  • Pulp Density
  • Pachuca Tank
  • Carbon Dioxide Transfer Rate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-5589-7_8
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5589-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo F. 1987. Mass balancing: an effective tool for fermentation process optimization. Crit Rev Biotechnol 6: 309-322.

    CAS  Google Scholar 

  • Acevedo F. 2000. The use of reactors in biomining processes. Electronic J Biotechnol 3: 184-194. Available from www.ejbiotechnology.info.

    Google Scholar 

  • Acevedo F, Cacciuttolo MA, Gentina JC. 1988. Comparative Performance of Stirred and Pachuca Tanks in the Bioleaching of a Copper Concentrate. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Kew Surrey.

    Google Scholar 

  • Acevedo F, Gentina JC, Valencia P. 2004. Optimization of pulp density and particle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus.World J Microbiol Biotechnol 20: 865-869.

    CrossRef  CAS  Google Scholar 

  • Acevedo F, Gentina JC. 1989. Process engineering aspects of the bioleaching of copper ores. Bioprocess Eng 4: 223-229.

    CrossRef  CAS  Google Scholar 

  • Acevedo F, Gentina JC, García N. 1998. CO 2supply in the biooxidation of an enargite-pyrite gold concentrate. Biotechnol Lett 20: 257-259.

    CrossRef  CAS  Google Scholar 

  • Aiba S, Humphrey AE, Millis NF. 1973. Biochemical Engineering, 2 nd ed., Academic Press, New York.

    Google Scholar 

  • Astudillo C, González P, Gentina JC, Acevedo F. 2004. Adaptation of Sulfolobus metallicusto high pulp densities. In: Proceedings of the 12 th International Biotechnology Symposium; Santiago, Chile.

    Google Scholar 

  • Atkinson B. 1971. Biochemical Reaction Engineering. In: Richardson JF, Peacock DG, eds. Chemical Engineering, vol. 3, Pergamon Press, Oxford.

    Google Scholar 

  • Atkinson B. 1974. Biochemical Reactors, chapter 3, Pion Ltd., London.

    Google Scholar 

  • Bailey AD, Hansford GS. 1993. Factors affecting bio-oxidation of sulfide minerals at high concentrations of solids: a review. Biotechnol Bioeng 42: 1164-1174.

    CrossRef  CAS  Google Scholar 

  • Bailey JE, Ollis DF. 1986. Biochemical Engineering Fundamentals, 2 nd ed., chapter 9. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Batty JD, Rorke GV. 2005. Development and commercial demonstration of the BioCOP TM thermophile process. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25 - 29, Cape Town, South Africa. Produced by Compress www.compress.co.za.

    Google Scholar 

  • Blanch HW, Clark DS. 1996. Biochemical Engineering, chapter 3. Marcel Dekker Inc., New York.

    Google Scholar 

  • Boogerd FC, Bos P, Kuenen JG, Heijnen JJ, van der Lans RGJM. 1990. Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme termophiles: a case study related to the microbial desulfurization of coal. Biotechnol Bioeng 35: 1111-1119.

    CrossRef  CAS  Google Scholar 

  • Boon M, Heijnen JJ. 1998. Gas-liquid mass transfer phenomena in bio-oxidation experiments of sulfide minerals: a critical review of literature data. Hydrometallurgy 48: 187-204.

    CrossRef  CAS  Google Scholar 

  • Boon M, Heijnen JJ. 1998a. Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy 48: 27-41.

    CrossRef  CAS  Google Scholar 

  • Bouquet F, Morin D. 2005. BROGIM mbox textregistered: a new three-phase mixing system – testwork and scale-up. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydro -metallurgy Symposium, September 25 – 29, Cape Town, South Africa. Produced by Compress www.compress.co.za.

    Google Scholar 

  • Brierley JA, Brierley CL. 1999. Present and Future Commercial Applications of Biohydrometallurgy. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21 st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 81-90.

    Google Scholar 

  • Canales C, Gentina JC, Acevedo F. 2002. Efecto de la aireación y la densidad de pulpa en el coeficiente de transferencia de oxígeno y la retención de aire en una columna de burbujeo para la biooxidación de concentrados de oro. In: Proceedings of the XV Chilean Congress of Chemical Engineering, October 22 – 24, Punta Arenas, Chile.

    Google Scholar 

  • Cooney CL, Wang DIC, Mateles RI. 1968. Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol Bioeng 11: 269-281.

    CrossRef  Google Scholar 

  • Cooney CL. 1981. Growth of Microorganisms. In: Rehm H-J, Reed G, eds. Biotechnology, vol.v 1, Verlag Chemie, Weinheim.

    Google Scholar 

  • Cooper CM, Fernstrom GA, Miller SA. 1944. Performance of agitated gas-liquid contactors. Ind Eng Chem 36: 504-509.

    CrossRef  CAS  Google Scholar 

  • Crundwell FK. 2001. Modeling, simulation, and optimization of bacterial leaching reactors. Biotechnol Bioeng 71: 255-265.

    CrossRef  CAS  Google Scholar 

  • Deveci H. 2004. Effect of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors. Hydrometallurgy 71: 385-396.

    CrossRef  CAS  Google Scholar 

  • Dew DW. 1995. Comparison of Performance for Continuous Bio-oxidation of Refractory Gold ore Flotation Concentrates. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile, Vol. 1, 239-252.

    Google Scholar 

  • Dew DW, Lawson EN, Broadhurst JL. 1997. The BIOX mbox textregisteredProcess for Biooxidation of Gold-Bearing Ores or Concentrates. In: Rawlings DE, ed. Biomining: Theory, Microbes, and Industrial Processes, Springer-Verlag, Berlin, 45-80.

    Google Scholar 

  • Esener AA, Roels JA, Kossen NWF. 1983. Theory and applications of unstructured growth models: kinetic and energetic aspects. Biotechnol Bioeng 25: 2803-2841.

    CrossRef  CAS  Google Scholar 

  • González R, Gentina JC, Acevedo F. 2004. Biooxidation of a gold concentrate in a continuous stirred tank reactor: mathematical model and optimal configuration. Biochem Eng J 19: 33-42.

    CrossRef  CAS  Google Scholar 

  • González R, Gentina JC, Acevedo F. 2003. Optimisation of the solids suspension condition in a continuous stirred tank reactor for the biooxidation of refractory gold concentrates. Electronic J Biotechnol 6: 233-240. Available from www.ejbiotechnology.info.

    Google Scholar 

  • Gormely LS, Brannion RMR. 1989. Engineering design of microbiological leaching reactors. In: Proceedings of the International Biohydrometallurgy Symposium, August 13–18, Jackson Hole, Wyoming.

    Google Scholar 

  • Greenhalgh P, Ritchie I. 1999. Advancing reactor designs for the gold bioleach process. In: Proceedings of the Biomine ’99 and Water Management in Metallurgical Operations, August 23–24, Australian Mineral Foundation Inc, Perth. Glenside, Australia.

    Google Scholar 

  • Harvey PI, Batty JD, Dew DW, Slabert W, van Buuren C. 1999. Engineering considerations in bioleach reactor design. In: Proceedings of the Biomine ’99 and Water Management in Metallurgical Operations, August 23–24, Australian Mineral Foundation Inc, Perth. Glenside, Australia.

    Google Scholar 

  • Heinzle T, Miller D, Nagel V. 1999. Results of an integrated pilot plant operation using the BioNIC? process to produce nickel metal. In: Proceedings of the Biomine ‘99 and Water Management in Metallurgical Operations, August 23–24, Australian Mineral Foundation Inc, Perth. Glenside, Australia.

    Google Scholar 

  • Hougen OA, Watson KM, Ragatz RA. 1954. Chemical Process Principles, 2 nd ed, John Wiley & Sons, New York.

    Google Scholar 

  • Lally KS. 1987. A-315 axial flow impeller for gas dispersion. Lightnin Technical Report 144.00.

    Google Scholar 

  • Levenspiel O. 1980. The Monod equation: a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22: 1671-1687.

    CrossRef  CAS  Google Scholar 

  • Levenspiel O. 1999a. Chemical Reaction Engineering, 3 rd ed, chapter 2, John Wiley & Sons, New York.

    Google Scholar 

  • Levenspiel O. 1999b. Chemical Reaction Engineering, 3 rd ed, chapter 5, John Wiley & Sons, New York.

    Google Scholar 

  • Levenspiel O. 1999c. Chemical Reaction Engineering, 3 rd ed., chapter 6, John Wiley & Sons, New York.

    Google Scholar 

  • Loi G, Trois P, Rossi G. 1995. Biorotor mbox textregistered: a New Development for Biohydrometallurgical Processing. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile, Vol. 1, 263-272.

    Google Scholar 

  • Ly ME. 2005. Biooxidación de Concentrados Refractarios de Arsenopirita en Tanques Agitados. In: Acevedo F, Gentina JC, eds. Fundamentos y Perspectivas de las Tecnologìas Biomineras. Ediciones Universitarias de Valparaìso, Valparaìso, Chile.

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J. 1997. Biología de los Microorganismos, 8 th ed. Prentice Hall Iberia, Madrid, Spain.

    Google Scholar 

  • Mateles RI. 1971. Calculation of the oxygen required for cell production. Biotechnol Bioeng 13: 581-582.

    PubMed  CrossRef  CAS  Google Scholar 

  • McCabe WL, Smith JC. 1956. Unit Operations of Chemical Engineering, Kogakusha Company Ltd, Tokyo, Japan.

    Google Scholar 

  • Miller PC. 1997. The Design and Operating Practice of Bacterial Oxidation Plant Using Moderate Thermophiles. Rawlings DE, ed. Biomining: Theory, Microbes, and Industrial Processes, Springer-Verlag, Berlin, 81-102.

    Google Scholar 

  • Mills DB, Bar R, Kirwan DJ. 1987. Effect of solids on oxygen transfer in agitated three-phase systems. AICHE J 33: 1542-1549.

    CrossRef  CAS  Google Scholar 

  • Monod J. 1949. The growth of bacterial cultures. Ann Rev Microbiol 3: 371-394.

    CrossRef  CAS  Google Scholar 

  • Myerson AS. 1981. Oxygen mass transfer requirements during the growth of Thiobacillus ferrooxidanson iron pyrite. Biotechnol Bioeng 23: 1413-1416.

    CrossRef  CAS  Google Scholar 

  • Nagpal S, Dahlstrom D, Oolman T. 1993. Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate. Biotechnol Bioeng 41: 459-464.

    CrossRef  CAS  Google Scholar 

  • Neale JW, Pinches A, Deeplaul V. 2000. Mintek-BacTech’s bacterial-oxidation technology for refractory gold concentrates: Beaconsfield and beyond. J South African Inst Min Metall 100: 415-421.

    Google Scholar 

  • Nielsen J, Villadsen J, Lidén G. 2003. Bioreactor Engineering Principles, 2 nd ed, chapter 3, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Nielsen J, Villadsen J, Lidén G. 2003a. Bioreactor Engineering Principles, 2 nd ed, chapter 7, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Olson JO. 1994. Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiol Lett 119: 1-6.

    CrossRef  CAS  Google Scholar 

  • Peleg M. 1997. Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equation. Crit Rev Food Sc 37: 471-490.

    CAS  CrossRef  Google Scholar 

  • Perry RH, Green DW, Maloney JO. 1984. Perry’s Chemical Engineers’ Handbook, 6 th ed, McGraw-Hill Book Company, New York, 19-50.

    Google Scholar 

  • Pirt SJ. 1975 Principles of Microbe and Cell Cultivation, chapters 2, 4, 21, 24. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Posten CH, Cooney CL. 1993. Growth of Microorganisms. In: Rehm H-J, Reed G, eds. Biotechnology, 2 nd ed., vol. 3, Verlag Chemie, Weinheim.

    Google Scholar 

  • Rawlings DE, Silver S. 1995. Mining with microbes. Bio-technol 13: 773-778.

    CAS  Google Scholar 

  • Rawlings DE, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21: 38-44.

    PubMed  CrossRef  CAS  Google Scholar 

  • Rossi G. 2001. The design of bioreactors. Hydrometallurgy 59: 217-231.

    CrossRef  CAS  Google Scholar 

  • Rossi G. 1999. The Design of Bioreactors. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21 stcentury, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 61-80.

    Google Scholar 

  • Soto L, Gentina JC, Acevedo F. 2002. Optimización del sistema de reacción para la biooxidación continua de un concentrado refractario de oro. In: Proceedings of the XV Chilean Congress of Chemical Engineering, October 22–25, Punta Arenas, Chile.

    Google Scholar 

  • Spencer PA, Satalic DM, Baxter KG, Pinches T. 1997. Key aspects in the design of a bacterial oxidation reactor. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia.

    Google Scholar 

  • Toma MK, Ruklisha MP, Vanags JJ, Zeltina MO, Leite MP, Galinina NI, Viesturs UE, Tengerdy RP. 1991. Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol Bioeng 38: 552-556.

    CrossRef  CAS  Google Scholar 

  • van’t Riet K. 1979. Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind Eng Chem Proc Des Dev 3: 357-364.

    CrossRef  Google Scholar 

  • van’t Riet K, Tramper J. 1991. Basic Bioreactor Design, Marcel Dekker Inc., New York.

    Google Scholar 

  • Wang DIC, Cooney CL., Demain AL, Dunnill P, Humphrey AE, Lilly MD. 1979. Fermentation and Enzyme Technology, chapter 6, John Wiley & Sons, New York.

    Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K. 1990. Modeling the bacterial growth curve. Appl Environ Microbiol 56: 1875-1881.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Acevedo, F., Gentina, J.C. (2007). Bioreactor Design Fundamentals And Their Application To Gold Mining. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_8

Download citation