Skip to main content

Bioleaching Of Sulfide Minerals In Continuous Stirred Tanks

  • Chapter

Keywords

  • Oxygen Uptake Rate
  • Sulfide Oxidation
  • Agitation System
  • Rushton Turbine
  • Thiobacillus Ferrooxidans

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-5589-7_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5589-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo F, Gentina JC, Garcia N. 1997. Effect of CO 2supply in the biooxidation of As refractory gold concentrate. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia, PM1.1-PM1.2.

    Google Scholar 

  • Bailey AD, Hansford GS. 1993. Factors affecting bio-oxidation of sulfide minerals at high concentrations of solids: a review. Biotechnol Bioeng 42: 1164-1174.

    CrossRef  CAS  Google Scholar 

  • Barrett J, Hughes MN, Karavaiko GI, Spencer PA. 1993. Metal extraction by bacterial oxidation of minerals, Ellis Horwood series in inorganic chemistry, New York.

    Google Scholar 

  • Battaglia-Brunet F, d’Hugues P, Cabral T, Cezac P, Garcia JL, Morin D. 1998. The mutual effect of mixed thiobacilli and leptospirilli. Miner Eng 11: 195-205.

    CrossRef  CAS  Google Scholar 

  • Batty JD, Rorke GV. 2005. Development and commercial demonstration of the BioCOP texttrademark thermophile process. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25-29, Cape Town, South Africa. Produced by Compress www.compress. co.za, 153-161.

    Google Scholar 

  • Brierley JA. 1997. Microbial population in mineral biooxidation processes. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia, PSC1.1-PSC1-10.

    Google Scholar 

  • Bouquet F, Morin D. 2005. BROGIM mbox textregistered: a new Three-Phase Mixing System Testwork and Scale-up. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress. co.za, 173-182.

    Google Scholar 

  • Clark ME, Batty J, van Buuren C, Dew D, Eamon D. 2005. Biotechnology in Minerals processing: technological breakthroughs creating value. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress. co.za, 17-24.

    Google Scholar 

  • Collinet MN, Morin D. 1990. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie van Leeuwenhoek 57: 237-244.

    PubMed  CrossRef  CAS  Google Scholar 

  • Coram NJ, Rawlings DE. 2002. Molecular Relationship between Two Groups of the Genus Leptospirillumand the Finding that Leptospirillum ferriphilumsp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40 rC. Appl Environ Microbiol 68: 838-845.

    PubMed  CrossRef  CAS  Google Scholar 

  • Crundwell FK. 1994. Modelling of bacterial leaching. Chem Eng J 54: 207-220.

    CAS  Google Scholar 

  • Crundwell FK. 2001.ct How do bacteria interact with minerals? In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 149-157.

    Google Scholar 

  • Dempers CJN, Breed AW, Hansford GS. 2003. The effect of maintenance on the ferrous-iron oxidation kinetics of Leptospirillum ferrooxidansIn: Tsezos M, Hatzikioseyian A, Remoudaki E, eds. BioHydrometallurgy: a sustainable technology in evolution. Eds National Technical University of Athens.

    Google Scholar 

  • Dew DW, Lawson EN, Broadhurst JL. 1997. The BIOX mbox textregisteredprocess for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 45-80.

    Google Scholar 

  • Dew D, Miller G. 1997. The BioNIC process: bioleaching of mineral sulfide concentrates for recovery of nickel. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia, M7.1.1-M7.1.9.

    Google Scholar 

  • Dew DW, van Buuren C, McEwan K, Bowker C. 1999. Bioleaching of base meta sulfide concentrates: a comparison of mesophile and thermophile bacterial cultures. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 229-238.

    CrossRef  Google Scholar 

  • d’Hugues P, Cezac P, Battaglia F, Morin D. 1999. Bioleaching of a cobaltiferous pyrite at 20% solids: a continuous laboratory-scale study. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 167-176.

    CrossRef  Google Scholar 

  • d’Hugues P, Morin D, Foucher S. 2001. HIOX mbox textregisteredProject: a bioleaching process for the treatment of chalcopyrite concentrates using extreme thermophiles. In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 75-83.

    Google Scholar 

  • Foucher S, Battaglia-Brunet F, d’Hugues P, Clarens M, Godon JJ, Morin D. 2001. Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column, and comparison with a mechanically-agitated reactor. In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 3-11.

    Google Scholar 

  • Fowler TA. 1999. Interactions in the bacterial leaching of pyrite and sphalerite by Thiobacillus ferro-oxidans, Ph. D. thesis, University of the Witwatersrand, Johannesburg, RSA.

    Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W. 1998. Importance of extracellular polymeric substances from Thiobacillus ferrooxidansfor bioleaching. Appl Environ Microbiol 64: 2743-2747.

    PubMed  CAS  Google Scholar 

  • Giaveno A, Chiacchiarini P, Lavalle L, Donati E. 2005. Reversed flow airflift reactor characterization for bioleaching applications. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 125-135.

    Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ERB, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN. 2000. Ferroplasma acidiphilum gen.nov., sp.nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam.nov., comprising a distinct lineage of the Archaea. Int J Sys Evol Microbiol 50: 997-1006.

    CAS  Google Scholar 

  • Gomez JM, Cantero D, Johnson DB. 1999. Comparison of the effects of temperature and pH on iron oxidation and survival of Thiobacillus ferrooxidans(type strain) and a ‘Leptospirillum ferrooxidans’-like isolate. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 689-696.

    Google Scholar 

  • Hansford GS. 1997. Recents development in modeling the kinetics of bioleaching. In In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 151-175.

    Google Scholar 

  • Hau JM, Morin D, Ollivier P, Aird J. 1997. Hydrometallurgical recovery of cobalt dissolved by bioleaching of a cobaltiferous pyrite concentrate. In: Hoberg H, von Blottnitz H, eds, Proceedings of the XX International Mineral Processing, Aachen, Germany. GDMB, Clausthal-Zellerfeld, Germany, 557-566.

    Google Scholar 

  • Hughes MN, Poole RK. 1989. Metals and Micro-organisms, Chapman and Hall, London.

    Google Scholar 

  • Ignatiadis I, Morin D. 2001. In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 95-105.

    Google Scholar 

  • Jerez C. 1997. Molecular methods for the identification and enumeration of bioleaching micro-organisms. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 281-297.

    Google Scholar 

  • Johnson DB, Francisco FR. 1997. Heterotrophic acidophiles and their roles in the bioleahcing of sulfide minerals. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 259-279.

    Google Scholar 

  • Kelly DP, Jones CA. 1977. Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures of Thiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration. In: Murr LE, Torma AE, Brierley JA, eds. Metallurgical applications of bacterial leaching and related phenomena. Academic Press, New York, 19-44.

    Google Scholar 

  • Kinzler K, Gehrke T, Telegdi J, Sand W. 2001. Bioleaching – a result of interfacial processes caused by extracellular polymeric substances (EPS). In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 191-197.

    Google Scholar 

  • Morin D, Battaglia F, Ollivier P. 1993. Study of the bioleaching of a cobaltiferrous pyritic concentrate. In: Torma AE, Wey JE, Lakshamanan VL, eds, Biohydrometallurgical Technologies. The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 147-156.

    Google Scholar 

  • Norris PR. 1989. Factors affecting bacterial mineral oxidation: the example of carbon dioxide in the context of bacterial diversity. In: Proceedings of the International Biohydrometallurgy Symposium’89, CANMET, Ottawa, 7-14.

    Google Scholar 

  • Norris PR. 1997. Thermophiles and bioleaching. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 247-258.

    Google Scholar 

  • Ojumu TV, Petersen J, Searby GE, Hansford GS. 2005. A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap leaching. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress. co.za,85-93.

    Google Scholar 

  • Oolman T. 1993. Bioreactor Design and Scaleup – Apllications in Minerals Bioleaching. In: Torma AE, Wey JE, Lakshamanan VL, eds. Biohydrometallurgical Technologies. The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 401-416.

    Google Scholar 

  • Pinches T, Chapman JT, te Riele WAM and van Staden M. 1988. The performances of bacterial leach reactors for the pre-oxidation of refractory gold-bearing sulfide concentrates. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Proceedings of the International Symposium, Warwick, Antony Rowe Ltd. Chippenham, Wiltshire, UK, 329-344.

    Google Scholar 

  • Rawlings DE. 1997. Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 229-245.

    Google Scholar 

  • Rawlings DE. 1999. The molecular genetics of mesophilic, acidophilic, chemolithotrophic, iron or sulfide-oxidizing microorganisms. Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part B, 3-20.

    Google Scholar 

  • Rawlings D, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21: 38-44.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ritchie I, Barter J. 1997. Process and engineering design aspects of biological oxidation plants. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia, M14.4.4-M14.4.8.

    Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A. 2001. (Bio)chemistry of bacterial leaching–direct vs. indirect bioleaching. Hydrometallurgy 59: 159-175.

    CrossRef  CAS  Google Scholar 

  • Sandström A, Sundkvist JE, Petersson S. 1997. Bio-oxidation of a complex zinc sulfide ore: a study performed in continuous bench and pilot scale. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia, M1.1.1-M1.1.11.

    Google Scholar 

  • Spencer PA. 2001. Influence of bacterial culture selection on the operation of a plant treating refractory gold ore. Int J Miner Process 62: 217-229.

    CrossRef  CAS  Google Scholar 

  • Tributsch H. 1999. Direct versus indirect bioleaching. Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 51-60.

    CrossRef  Google Scholar 

  • Tributsch H. 2001. Direct versus indirect bioleaching, Hydrometallurgy 59: 177-185.

    CrossRef  CAS  Google Scholar 

  • Wiersma CL, Rimstidt JD. 1984. Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochim Cosmochim Acta 48: 84-92.

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Morin, D.H.R. (2007). Bioleaching Of Sulfide Minerals In Continuous Stirred Tanks. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_7

Download citation