Bechtel A, Elliott WC, Oszczepalski S. 2001. The occurrences of the rare earth elements and the platinum group elements in relation to base metal zoning in the vicinity of Rote Faule in the Kupferschiefer of Poland. Appl Geochem 16: 375-386.
CrossRef
CAS
Google Scholar
Bechtel A, Gratzer R, Puttmann W, Oszczepalski S. 2002. Geochemical characteristics across the oxic-anoxic interface within the Kupferschiefer of the Lubin-Sieroszowice mining district. Chem Geol 185: 9–31.
CrossRef
CAS
Google Scholar
Beech IB, Gaylarde CC. 1989. Adhesion of Desulfovibrio desulfuricans and Pseudomonas
fluorescens to metal steels surfaces. J Appl Bacteriol 67: 201-207.
Google Scholar
Beijerinck MW. 1904. Ueber die bakterien welche sich im Dunkels mit Kohlensaure als Kohlenstoffquelle ernahren konnen. Centralb Bacteriol Parasitenkb Infektionskr Hyg Abt II 11: 593-599.
Google Scholar
Bennet IB, Tributsch H. 1978. Bacterial leaching patterns on pyrite crystals surfaces. J Bacteriol 134: 310-317.
Google Scholar
Bosecker K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20: 591-604.
CrossRef
CAS
Google Scholar
Burgestaller W, Schinner F. 1993. Leaching of metals with fungi, J Biotechnol 27: 91-116.
CrossRef
Google Scholar
Chlebicki A, Godzik B, Lorenc MW, Sklodowska A. 2005. Fungi and arsenic-tolerant bacteria in the hypogean environment of an ancient gold mine in lower Silesia, SW Poland. Polish Botanical Studies 19: 81-95.
Google Scholar
Groudev SN. 1987. Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7: 299-306.
CrossRef
Google Scholar
Ixer RA. 2001. An assessment of copper mineralisation from the Grat Orme Mine, Llandudno, North Wales, as ore in the Bronze Age. Proceedings of the Yorkshire Geological Society 53: 213-219.
CrossRef
Google Scholar
Karas H, Sadowski Z. 2002. Biohydrometalurgia na swiecie. In: Charewicz W, ed. Biometalurgia metali nieżelaznych podstawy i zastosowanie, Wroclaw, CBPM Cuprum.
Google Scholar
Kasama T, Murakami T. 2001. The effect of microorganisms on Fe precipitation rates at neutral pH. Chem Geol 180: 117-128.
CrossRef
CAS
Google Scholar
Kelly DP, Harrison AP. 1989. Genus Thiobacillus. In: Staley JT, Bryant MP, Pfennig N, Holt JG, eds. Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore.
Google Scholar
Kelly DP, Wood A. 2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillusgen. nov. Int J Syst Evolut Microbiol 50: 511-516.
Google Scholar
Kelly DP, McDonald IR, Wood A. 2000. Proposal for the reclassification of Thiobacillus novellas as Starkeya
novellagen. nov., comb. nov., in the α-subclass of the Proteobacteria. Int J Syst Evolut Microbiol 50: 1797-1802.
CAS
Google Scholar
Kinzler K, Gehrke T, Telegdi J, Sand W. 2003. Bioleaching – a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy 71: 83-88.
CrossRef
CAS
Google Scholar
Kunicki-Goldfinger W, Lejczak-Sklodowska A, Ostrowski M. 1980. Leaching of copper. in alkaline environment. In: Proceedings of the International Conference on use of the microorganism in hydrometallurgy, Pecs, Hungary.
Google Scholar
Lejczak A, Ostrowski M, Kunicki-Goldfineger W. 1980. Assay of bacterial copper leaching from covellin at alkaline initial pH. Acta Microbiol Polon 29: 69-74.
CAS
Google Scholar
Moreira D, Amils R. 1997. Phylogeny of Thiobacillus cuprinus and other mixotrophic Thiobacilli: proposal for Thiomonasgen. nov. Int J Syst Bacteriol 47: 522-528.
PubMed
CAS
CrossRef
Google Scholar
Ostrowski M, Sklodowska A, Kunicki-Goldfinger W. 1990. Bacterial leaching of copper from alkaline and neutral postflotation wastes with the use of brown coal. Acta Microbiol Polon 39: 71-78.
CAS
Google Scholar
Ostrowski M, Sklodowska A. 1993. Bacterial and chemical leaching pattern on copper ores of sandstone and limestone type. World J Microbiol Biotechnol 9: 328-333.
CrossRef
Google Scholar
Ostrowski M, Sklodowska A. 1996. Acid leaching in alkaline environment. Bulletin of the Polish Academy of Sciences, Biol Sci 44: 279-283.
CAS
Google Scholar
Oszczepalski S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita 34: 599-613.
CrossRef
CAS
Google Scholar
Piestrzynski A, Pieczonka J, Gżuszek A. 2002. Red-bed type gold mineralization, Kupfershiefer, southwest Poland. Mineralium Deposita 37: 512-528.
CrossRef
CAS
Google Scholar
Rodriquez-Leiva M, Tributsch H. 1988. Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149: 401-405.
CrossRef
Google Scholar
Sklodowska A, Matlakowska R, Ludwig W. 1996. Unusual bacteria strain closely related to Bacillus insolitus. Acta Microbiol Polon 45: 131-141.
Google Scholar
Sklodowska A., Matlakowska R. 1998. Relative surface charge, hydrophobicity of bacterial cells and their affinity to substrate during copper bioleaching from post-flotation wastes. Biotechnol Lett 20: 229-233.
CrossRef
CAS
Google Scholar
Sklodowska A, Matlakowska R, Bal K. 2005. Extracellular polymer produced in the presence of copper minerals during bioleaching. Geomicrobiol J 22: 1-9.
CrossRef
Google Scholar
U.S.EPA. 1994. Technical resource document. Extraction and beneficiation of ores and minerals. Copper, Vol 4, EPA 530-R-94-031, Washington.
Google Scholar
Willscher S, Bosecker K. 2003. Studies on the leaching behavior of heterotrophic microorganisms isolated from alkaline lag dump. Hydrometallurgy 71: 257-264.
CrossRef
CAS
Google Scholar