Acuña J, Rojas J, Amaro AM, Toledo H, Jerez CA. 1992. Chemotaxis of Leptospirillum ferrooxidansand other acidophilic chemolithotrophs: comparison with the Escherichia colichemosensory system. FEMS Microbiol Lett 96: 37-42.
CrossRef
Google Scholar
Andrews GF. 1988. The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces. Biotechnol Bioeng 31: 378-381.
CAS
CrossRef
Google Scholar
Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V. 1999. Characterization of an operon encoding two c-type cytochromes, an aa 3 -type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65: 4781-4787.
PubMed
CAS
Google Scholar
Bacon M, Ingledew WJ. 1989. The reductive reactions of Thiobacillus ferrooxidans on sulphur and selenium. FEMS Microbiol Lett 58: 189-194.
CAS
CrossRef
Google Scholar
Bagdigian RM, Meyerson AS. 1986. The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 28: 467-479.
CAS
CrossRef
Google Scholar
Barr DW, Ingledew WJ, Norris PR. 1990. Respiratory chain components of iron-oxidizing, acidophilic bacteria. FEMS Microbiol Lett 70: 85-90.
CAS
CrossRef
Google Scholar
Barreto M, Gehrke T, Harneit K, Sand W, Jedlicki E, Holmes D. 2005b. Unexpected insights into biofilm formation by Acidithiobacillus ferrooxidans revealed by genome analysis and experimental approaches. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25-29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 817-825.
Google Scholar
Barreto M, Jedlicki E, Holmes DS. 2005a. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71: 2902-2909.
CAS
CrossRef
Google Scholar
Bevilaqua D, Leite ALLC, Garcia O Jr., Tuovinen OH. 2002. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochem 38: 587-592.
CAS
CrossRef
Google Scholar
Blake RC II, Shute EA, Greenwood MM, Spencer GH, Ingledew WJ. 1993a. Enzymes of aerobic respiration on iron. FEMS Microbiol Rev 11: 9-18.
CrossRef
Google Scholar
Blake RC II, Shute EA, Howard GT. 1994. Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60: 3349-3357.
PubMed
Google Scholar
Blake RC II, Shute EA, Waskovsky J, Harrison AP Jr. 1993b. Respiratory components in acidophilic bacteria that respire on iron. Geomicrobiol J 10: 173-192.
Google Scholar
Bond PL, Druschel GK, Banfield JF. 2000a. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66: 4962-4971.
CAS
CrossRef
Google Scholar
Bond PL, Smriga SP, Banfield JF. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66: 3842-3849.
PubMed
CAS
CrossRef
Google Scholar
Boon M, Heijnen JJ, Hansford GS. 1998. The mechanism and kinetics of bioleaching sulphide minerals. Min Pro Ext Met Rev 19: 107-115.
CAS
Google Scholar
Bosecker K. 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20: 591-604.
CAS
CrossRef
Google Scholar
Brasseur G, Levican G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D. 2004. Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta 1656: 114-126.
PubMed
CAS
CrossRef
Google Scholar
Bronstein M, Schütz M, Hauska G, Padan E, Shahak Y. 2000. Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J Bacteriol 182: 3336-3344.
PubMed
CAS
CrossRef
Google Scholar
Bruscella P, Cassagnaud L, Ratouchniak J, Brasseur G, Lojou E, Amils R, Bonnefoy V. 2005. The HiPIP from the acidophilic Acidithiobacillus ferrooxidans is correctly processed and translocated in Escherichia coli, in spite of the periplasm pH difference between these two micro-organisms. Microbiology 151: 1421-1431.
PubMed
CAS
CrossRef
Google Scholar
Brüser T, Lens PNL, Trüper HG. 2000. The biological sulfur cycle. In: Lens PNL, Hulshoff Pol L, eds. Environmental technologies to treat sulfur pollution. IWA Publishing, London, 47-85.
Google Scholar
Buonfiglio V, Polidoro M, Soyer F, Valenti P, Shively J. 1999. A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans. J Biotechnol 72: 85-93.
PubMed
CAS
CrossRef
Google Scholar
Chen Z-W, Jiang C-Y, She Q, Liu S-J, Zhou P-J. 2005. Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 71: 621-628.
PubMed
CAS
CrossRef
Google Scholar
Corbett CM, Ingledew WJ. 1987. Is Fe 3 + / 2 + cycling an intermediate in sulfur oxidation by Fe 2 + -grown Thiobacillus ferrooxidans? FEMS Microbiol Lett 41: 1-6.
CAS
CrossRef
Google Scholar
Cox JC, Boxer DH. 1978. The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem J 174: 497-502.
PubMed
CAS
Google Scholar
Descostes M, Vitorge P, Beaucaire C. 2004. Pyrite dissolution in acidic media. Geochim Cosmochim Acta 68: 4559-4569.
ADS
CAS
CrossRef
Google Scholar
DiSpirito AA, Dugan PR, Tuovinen OH. 1983. Sorption of Thiobacillus ferrooxidans to particulate material. Biotechnol Bioeng 25: 1163-1168.
CAS
CrossRef
Google Scholar
Dopson M, Baker-Austin C, Bond PL. 2005. Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology 151: 4127-4137.
PubMed
CAS
CrossRef
Google Scholar
Dziurla MA, Achouak W, Lam BT, Heulin T, Berthelin J. 1998. Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite. Appl Environ Microbiol 64: 2937-2942.
PubMed
CAS
Google Scholar
Edelbro R, Sandström A, Paul J. 2003. Full potential calculations on the electron bandstructures of spalerite, pyrite and chalcopyrite. Appl Surf Sci 206: 300-313.
CAS
CrossRef
Google Scholar
Edwards KJ, Bond PL, Gihring TM, Banfield JF. 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287: 1796-1799.
PubMed
ADS
CAS
CrossRef
Google Scholar
Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, Mcguire MM, Hamers RJ, Pace NR, Banfield JF. 1999. Geomicrobiology of pyrite (FeS 2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16: 155-179.
CAS
CrossRef
Google Scholar
Edwards KJ, Rutenberg AD. 2001. Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem Geol 180: 19-32.
CAS
CrossRef
Google Scholar
Edwards KJ, Schrenk MO, Hamers R, Banfield JF. 1998. Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. Am Mineral 83: 1444-1453.
CAS
Google Scholar
Ehrlich HL. 2002. Geomicrobiology, 3 rd ed. Marcel Dekker Inc., New York.
Google Scholar
Emmel T, Sand W, König W, Bock E. 1986. Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. J Gen Microbiol 132: 3415-3420.
CAS
Google Scholar
Farver O, Pecht I. 1997. The role of the medium in long-range electron transfer. J. Biol Inorg Chem 2: 387-392.
CAS
CrossRef
Google Scholar
Flemming HC, Wingender J. 2001. Relevance of microbial extracellular polymeric substances (EPSs) – Part I: Structural and ecological aspects. Wat Sci Tech 43: 1-8.
CAS
Google Scholar
Fowler TA, Crundwell FK. 1998. Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no direct bacterial mechanism. Appl Environ Microbiol 64: 3570-3575.
PubMed
CAS
Google Scholar
Fowler TA, Crundwell FK. 1999. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65: 5285-5292.
PubMed
CAS
Google Scholar
Fowler TA, Holmes PR, Crundwell FK. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65: 2987-2993.
PubMed
CAS
Google Scholar
Friedrich CG, Bradischewsky F, Rother D, Quentmeier A, Fischer J. 2005. Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253-259.
PubMed
CAS
CrossRef
Google Scholar
Friedrich CG, Rother D, Bradischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67: 2873-2882.
PubMed
CAS
CrossRef
Google Scholar
Friedrich CG. 1998. Physiology and genetics of sulphur-oxidizing bacteria. Adv Microbiol Physiol 39: 235-289.
CAS
MathSciNet
CrossRef
Google Scholar
Fukumori Y, Yano T, Sato A, Yamanaka T. 1988. Fe(II)-oxidizing enzyme purified from Thiobacillus ferrooxidans. FEMS Microbiol Lett 50: 169-172.
CAS
CrossRef
Google Scholar
Gehrke T, Hallmann R, Kinzler K, Sand W. 2001. The EPS of Acidithiobacillus ferrooxidans - a model for structure-function relationships of attached bacteria and their physiology. Water Sci Technol 43: 159-167.
PubMed
CAS
Google Scholar
Gehrke T, Telegdi J, Thierry D, Sand W. 1998. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64: 2743-2747.
PubMed
CAS
Google Scholar
Gehrke T. 1998. Bedeutung extrazellulärer polymerer Substanzen von Thiobacillus ferrooxidans für die mikrobielle Besiedelung und Laugung von Pyrit und Schwefel. PhD thesis, University of Hamburg, Hamburg.
Google Scholar
Giudici-Orticoni MT, Guerlesquin F, Bruschi M, Nitschke W. 1999. Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c 4 . J Biol Chem 274: 30365-30369.
PubMed
CAS
CrossRef
Google Scholar
Golyshina OV, Timmis KN. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7: 1277-1288.
PubMed
CAS
CrossRef
Google Scholar
Grützner T. 2001. Auswirkungen von Acidithiobacillus ferrooxidans auf die Flotierbarkeit sulfidischer Minerale. Diploma thesis, TU Clausthal, Clausthal-Zellerfeld.
Google Scholar
Hallmann R, Friedrich A, Koops H-P, Pommerening-Röser A, Rohde K, Zenneck C, Sand W. 1993. Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and pyhsiochemical factors influence microbial metal leaching. Geomicrobiol J 10: 193-206.
Google Scholar
Hansford GS. 1997. Recent developments in modelling the kinetics of bioleaching sulphide minerals. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 153-175.
Google Scholar
Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W. 2005. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress. co.za, 635-645.
Google Scholar
Ingledew WJ, Cobley JG. 1980. A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans. Biochim Biophys Acta 590: 141-158.
PubMed
CAS
CrossRef
Google Scholar
Kai M, Yano T, Fukumori Y, Yamanaka T. 1989. Cytochrome oxidase of an acidophilic iron-oxidizing bacterium, Thiobacillus ferrooxidans, functions at pH 3.5. Biochem Biophys Res Commun 160: 839-843.
PubMed
CAS
CrossRef
Google Scholar
Kinzler K, Gehrke T, Telegdi J, Sand W. 2003. Bioleaching – a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy 71, 83-88.
CAS
CrossRef
Google Scholar
Kletzin A, Urich T, Müller F, Bandeiras TM, Gomes CM. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic Archaea. J Bioenerg Biomem 36: 77-91.
Google Scholar
Kletzin A. 1989. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171: 1638-1643.
PubMed
CAS
Google Scholar
Kletzin A. 1992. Molecular characterization of the sor gene, which encodes the sulfur oxygenase reductase of the thermophilic archaeum Desulfurolobus ambivalens. J Bacteriol 174: 5854-5859.
PubMed
CAS
Google Scholar
Lazar P. 2004. Optimierung der Gewinnung von extrazellulären polymeren Substanzen von Laugungsbakterien. Diploma thesis, University of Hamburg, Hamburg.
Google Scholar
Lemesle-Meunier D, Brasseur G, Tron P, Bennaroch D, Nitschke W, Elbehti A. 2001. The membrane-bound C type cytochromes and the interaction between the downhill and uphill electron transfer pathways in the acidophilic chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 299-308.
Google Scholar
Little B, Ray B, Pope R, Franklin M, White DC. 2000. Spatial and temporal relationships between localised corrosion and bacterial activity on iron-containing substrata. In: Sequeira CAC, ed. Microbial Corrosion, European Federation of Corrosion Publications No 29, The Institute of Materials, London, 21-35.
Google Scholar
Luther GW III. 1987. Pyrite oxidation and reduction: molecular orbital theory considerations. Geochim Cosmochim Acta 51: 3193-3199.
ADS
CrossRef
Google Scholar
Medvedev D, Stuchebrukhov AA. 2001. DNA repair mechanism by photolyase: Electron transfer path from the photolyase catalytic cofactor FADH - to DNA thymine dimer. J theor Biol 210: 237-248.
PubMed
CAS
CrossRef
Google Scholar
Meruane G, Salhe C, Wiertz J, Vargas T. 2002. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans.Biotechnol Bioeng 80: 280-288.
PubMed
CAS
CrossRef
Google Scholar
Meyer G, Schneider-Merck T, Böhme S, Sand W. 2002. A simple method for investigations on the chemotaxis of A. ferrooxidans and D. vulgaris. Acta Biotechnol 22: 391-399.
CAS
CrossRef
Google Scholar
Moses CO, Nordstrom DK, Herman JS, Mills AL. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51: 1561-1571.
ADS
CAS
CrossRef
Google Scholar
Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A. 2004. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate: quinone oxidoreductase. Mol Microbiol 53: 1147-1160.
PubMed
CrossRef
CAS
Google Scholar
Mustin C, de Donato P, Berthelin J, Marion P. 1993. Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans. FEMS Microbiol Rev 11: 71-78.
CAS
CrossRef
Google Scholar
Ndlovu S, Monhemius AJ. 2005. The influence of crystal orientation on the bacterial dissolution of pyrite. Hydrometallurgy 78: 187-197.
CAS
CrossRef
Google Scholar
NIST. 2003. Critical selected stability constants of metal complexes database. NIST standard reference database 46, version 7.0, National Institute of Standards and Technology, Gaithersburg, MD.
Google Scholar
Norris PR, Barr DW, Hinson D. 1988. Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Proceedings of the International Symposium, Warwick, Antony Rowe Ltd. Chippenham, Wiltshire, UK, 43-59.
Google Scholar
Nouailler M, Bruscella P, Lojou E, Lebrun R, Bonnefoy V, Guerlesquin F. 2006. Structural analysis of HiPIP from the acidophilic bacteria: Acidithiobacillus ferrooxidans. Extremophiles 10: 191-198.
PubMed
CAS
CrossRef
Google Scholar
Ohmura N, Kitamura K, Saiki H. 1993. Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl Environ Microbiol 59: 4044-4050.
PubMed
CAS
Google Scholar
Olson GJ, Brierley JA, Brierley CL. 2003. Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63: 249-257.
PubMed
CAS
CrossRef
Google Scholar
Pace DL, Mielke RE, Southham G, Porter TL. 2005. Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals. Scanning 27: 136-140.
PubMed
CAS
CrossRef
Google Scholar
Petersen J, Dixon DG. 2005. Competitive bioleaching of pyrite and chalcopyrite. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25-29, Cape Town, South Africa. Produced by Compress www.compress. co.za, 55-64.
Google Scholar
Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG. 1990. Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293-306.
CAS
CrossRef
Google Scholar
Ram RJ, VerBerkmoes NC, Thelen, MP, Tyson GW, Baker, BJ, Blake RC II, Shah M, Hettich RL, Banfield JF. 2005. Community proteomics of a natural microbial biofilm. Science 308: 1915-1920.
PubMed
ADS
CAS
CrossRef
Google Scholar
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70: 4491-4498.
PubMed
CrossRef
CAS
Google Scholar
Rawlings DE, Dew D, du Plessis C. 2003. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21: 38-44.
PubMed
CAS
CrossRef
Google Scholar
Rawlings DE, Tributsch H, Hansford GS. 1999. Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145: 5-13.
PubMed
CAS
CrossRef
Google Scholar
Rawlings DE. 1997. Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin.
Google Scholar
Rawlings DE. 2002. Heavy metal mining using microbes. Annu Rev Microbiol 56: 65-91.
PubMed
CAS
CrossRef
Google Scholar
Rimstidt JD, Vaughan DJ. 2003. Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67: 873-880.
ADS
CAS
CrossRef
Google Scholar
Rodriguez-Leiva M, Tributsch H. 1988. Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149: 401-405.
CAS
CrossRef
Google Scholar
Rohwerder T, Gehrke T, Kinzler K, Sand W. 2003. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63: 239-248.
PubMed
CAS
CrossRef
Google Scholar
Rohwerder T, Jozsa P-G, Gehrke T, Sand W. 2002. Bioleaching. In: Bitton G, ed. Encyclopedia of environmental microbiology. John Wiley & Sons, New York, Vol. 2, 632-641.
Google Scholar
Rohwerder T, Sand W. 2003. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149: 1699-1709.
PubMed
CAS
CrossRef
Google Scholar
Rohwerder T, Schippers A, Sand W. 1998. Determination of reaction energy values for biological pyrite oxidation by calorimetry. Thermochim Acta 309: 79-85.
CAS
CrossRef
Google Scholar
Rojas-Chapana JA, Tributsch H. 2004. Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite. FEMS Microbiol Ecol 47: 19-29.
CAS
CrossRef
Google Scholar
Sampson MI, Phillips CV, Blake RC II. 2000. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Miner Eng 13: 373-389.
CAS
CrossRef
Google Scholar
Sand W, Gehrke T, Hallmann R, Schippers A. 1995. Sulfur chemistry, biofilm, and the (in)direct attack mechanism – a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43: 961-966.
CAS
CrossRef
Google Scholar
Sand W, Gehrke T, Hallmann R, Schippers A. 1998. Towards a novel bioleaching mechanism. Min Pro Ext Met Rev 19: 97-106.
CAS
CrossRef
Google Scholar
Sand W, Gehrke T, Jozsa P-G, Schippers A. 2001. (Bio)chemistry of bacterial leaching – direct vs. indirect bioleaching. Hydrometallurgy 59: 159-175.
CAS
CrossRef
Google Scholar
Sand W, Gehrke T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157: 49-56.
PubMed
CAS
CrossRef
Google Scholar
Sand W, Rohde K, Sobotke B, Zenneck C. 1992. Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58: 85-92.
PubMed
CAS
Google Scholar
Sanhueza A, Ferrer IJ, Vargas T, Amils R, Sánchez C. 1999. Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51: 115-129.
CAS
CrossRef
Google Scholar
Schippers A, Jozsa P-G, Sand W. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62: 3424-3431.
PubMed
CAS
Google Scholar
Schippers A, Rohwerder T, Sand W. 1999. Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52: 104-110.
CAS
CrossRef
Google Scholar
Schippers A, Sand W. 1999. Bacterial leaching of metal sulfide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65: 319-321.
PubMed
CAS
Google Scholar
Schippers A. 2004. Biogeochmistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW, eds. Sulfur biogeochemistry – Past and present. Special Paper 379, Geological Society of America, Boulder, Colorado, 49-62.
Google Scholar
Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF. 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279: 1519-1522.
PubMed
ADS
CAS
CrossRef
Google Scholar
Shrihari RK, Modak JM, Kumar R, Gandhi KS. 1995. Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans. Hydrometallurgy 38: 175-187.
CAS
CrossRef
Google Scholar
Singer PC, Stumm W. 1970. Acidic mine drainage: the rate-determining step. Science 167: 1121-1123.
ADS
CAS
CrossRef
Google Scholar
Skourtis SS, Beratan DN. 1997. High and low resolution theories of protein electron transfer. J. Biol Inorg Chem 2: 378-386.
CAS
CrossRef
Google Scholar
Solari JA, Huerta G, Escobar B, Vargas T, Badilla-Ohlbaum R, Rubio J. 1992. Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloids Surfaces 69: 159-166.
CAS
CrossRef
Google Scholar
Steudel R. 1996. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35: 1417-1423.
CAS
CrossRef
Google Scholar
Suzuki I. 1999. Oxidation of inorganic sulphur compounds: chemical and enzymatic reactions. Can J Microbiol 45: 97-105.
Google Scholar
Telegdi J, Keresztes Z, Pálinkás G, Kalman E, Sand W. 1998. Microbially influenced corrosion visualized by atomic force microscopy. Appl Phys A66: S639-S642.
ADS
Google Scholar
Tributsch H, Bennett JC. 1981. Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metals. J Chem Technol Biotechnol 31: 565-577.
CAS
CrossRef
Google Scholar
Tributsch H. , 2001. Direct versus indirect bioleaching. Hydrometallurgy 59: 177-185.
CAS
CrossRef
Google Scholar
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37-43.
PubMed
ADS
CAS
CrossRef
Google Scholar
Urich T, Gomes CM, Kletzin A, Frazao C. 2006. X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311: 996-1000.
PubMed
ADS
CAS
CrossRef
Google Scholar
Vandevivere P, Kirchman DL. 1993. Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59: 3280-3286.
PubMed
CAS
Google Scholar
Wakai S, Kikumoto M, Kanao T, Kamimura K. 2004. Involvement of sulfide: quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem 68: 2519-2528.
PubMed
CAS
CrossRef
Google Scholar
Winkler JR, Gray HB. 1997. Electron tunneling in proteins: role of the intervening medium. J. Biol Inorg Chem 2: 399-404.
CAS
CrossRef
Google Scholar
Yamanaka T, Fukumori Y. 1995. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol Rev 17: 401-413.
PubMed
CAS
CrossRef
Google Scholar
Yamanaka T, Yano T, Kai M, Tamegai H, Sato A, Fukumori Y. 1991. The electron transfer system in an acidophilic iron-oxidizing bacterium. In: Mukohata Y, ed. New era of bioenergetics. Academic Press, Tokyo, 223-246.
Google Scholar
Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V. 2004. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150: 2113-2123.
PubMed
CrossRef
CAS
Google Scholar
Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V. 2002b. The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184: 313-317.
CrossRef
Google Scholar
Zimmermann P, Laska S, Kletzin A. 1999. Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Arch Microbiol 172: 76-82.
PubMed
CAS
CrossRef
Google Scholar