Skip to main content

Microorganisms Involved in Bioleaching and Nucleic Acid-Based Molecular Methods for Their Identification and Quantification

  • Chapter

Keywords

  • Acid Mine Drainage
  • Metal Sulfide
  • Acidithiobacillus Ferrooxidans
  • Thiobacillus Ferrooxidans
  • Acidophilic Bacterium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-5589-7_1
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5589-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Krumholz L, Stahl DA. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762-770.

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143-169.

    PubMed  CAS  Google Scholar 

  • Appia-Ayme C, Quatrini R, Denis Y, Denizot F, Silver S, Roberto F, Veloso F, Valdes J, Cárdenas JP, Esparza M, Orellana O, Jedlicki E, Bonnefoy V, Holmes D. 2006. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy 83:273–280.

    CAS  Google Scholar 

  • Asmah RH, Clement C, Bosompem KM, Wilson MD, Brown CA, Osei YD, Addy ME. 2001. Molecular characterization of mineral leaching bacteria from a gold mine in Ghana using PCR and RFLP. In: Ciminelli VST, Garcia Jr. O, eds. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 317-324.

    Google Scholar 

  • Bacelar-Nicolau P, Johnson DB. 1999. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585-590.

    PubMed  CAS  Google Scholar 

  • Balashova VV, Vedenina IYa, Markosyan GE, Zavarzin GA. 1974. The autotrophic growth of Leptospirillum ferrooxidans. Microbiology 43:491-494.

    Google Scholar 

  • Battaglia F, Morin D, Garcia J-L, Ollivier P. 1994. Isolation and study of two strains of Leptospirillum-like bacteria from a natural mixed population cultured on a cobaltiferrous pyrite substrate. Antonie van Leeuwenhoek 66:295-302.

    PubMed  CAS  Google Scholar 

  • Battaglia-Brunet F, Clarens M, d’Hugues P, Godon JJ, Foucher S, Morin D. 2002. Monitoring of a pyrite-oxidising bacterial population using DNA single-strand conformation polymorphism and microscopic techniques. Appl Microbiol Biotechnol 60:206-211.

    PubMed  CAS  Google Scholar 

  • Batty JD, Rorke GV. 2006. Development and commercial demonstration of the BioCOP TM thermophile process. Hydrometallurgy 83:83–89.

    CAS  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJJ. 2002. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977-3984.

    PubMed  CAS  Google Scholar 

  • Belly RT, Bohlool BB, Brock TD. 1973. The genusThermoplasma. Ann. NY Acad. Sci. 225:94-107.

    Google Scholar 

  • Bergamo RF, Novo MTM, Verissimo RV, Paulino LC, Stoppe NC, Sato MIZ, Manfio GP, Prado PI, Garcia O, Ottoboni LMM. 2004. Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis. Res Microbiol 155:559-567.

    PubMed  CAS  Google Scholar 

  • Bernier L, Warren LA. 2005. Microbially driven acidity generation in a tailings lake. Geobiology 5:115-133.

    Google Scholar 

  • Bhatti TM, Bigham JM, Carlson L, Tuovinen OH. 1993. Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 59:1984-1990.

    PubMed  CAS  Google Scholar 

  • Bogdanova TI, Tsaplina IA, Kondrat’eva TF, Duda VI, Suzina NE, Melamud VS, Tourova1 TP, Karavaiko GI. 2006. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol 56:1039-1042.

    PubMed  CAS  Google Scholar 

  • Bond PL, Druschel GK, Banfield JF. 2000a. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962-4971.

    CAS  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF. 2000b. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842-3849.

    CAS  Google Scholar 

  • Bridge TAM, Johnson DB. 1998. Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181-2186.

    PubMed  CAS  Google Scholar 

  • Bridge TAM, Johnson DB. 2000. Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol J 17:193-206.

    CAS  Google Scholar 

  • Brierley CL. 1978. Bacterial leaching. CRC Crit Rev Microbiol 6:207-262.

    PubMed  CAS  Google Scholar 

  • Brierley CL. 1997. Mining Biotechnology: Research to commercial development and beyond. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 3-17.

    Google Scholar 

  • Brierley CL, Brierley JA. 1973. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183-188.

    PubMed  CAS  Google Scholar 

  • Brierley CL, Brierley JA. 1986. Microbial mining using thermophilic microorganisms. In: Brock TD, ed. Thermophiles: General, Molecular, and Applied Microbiology. Wiley, New York, 279-305.

    Google Scholar 

  • Brierley JA, Lockwood AS. 1977. The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiol Lett 2:163-165.

    CAS  Google Scholar 

  • Brierley CL, Murr LE. 1973. Leaching: use of a thermophilic and chemoautotrophic microbe. Science 179:488-490.

    ADS  CAS  Google Scholar 

  • Brock TD. 1978. Thermophilic Microorganisms and Life at High Temperatures. Springer-Verlag, New York.

    Google Scholar 

  • Brock TD, Gustafson J. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567-571.

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54-68.

    PubMed  CAS  Google Scholar 

  • Bruneel O, Duran R, Koffi K, Casiot C, Fourcans A, Elbaz-Poulichet F, Personne JC. 2005. Microbial diversity in a pyrite-rich tailings impoundment (Carnoules, France). Geomicrobiol J 22:249-257.

    CAS  Google Scholar 

  • Bryan CG, Hallberg KB, Johnson DB. 2006. Mobilisation of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy 83:184–194.

    CAS  Google Scholar 

  • Bryant RD, McGroarty KM, Costerion JW, LaishIey EJ. 1983. Isolation and characterization of a new acidophilic Thiobacillusspecies (T. albertis). Can J Microbiol 29:1159-1170.

    Google Scholar 

  • Burton NP, Norris PR. 2000. Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315-320.

    PubMed  CAS  Google Scholar 

  • Clark DA, Norris PR. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785-790.

    CAS  Google Scholar 

  • Colmer AR, Hinkle ME. 1947. The role of microorganisms in acid mine drainage. Science 106:253-256.

    ADS  CAS  Google Scholar 

  • Coram NJ, Rawlings DE. 2002. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 ˚C. Appl Environ Microbiol 68:838-845.

    PubMed  CAS  Google Scholar 

  • Coram-Uliana JM, van Hille RP, Kohr WJ, Harrison STL. 2006. Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy 83:237–244.

    CAS  Google Scholar 

  • Coupland K, Johnson DB. 2004. Geochemistry and microbiology of an impounded subterranean acidic water body at Mynydd Parys, Anglesey, Wales. Geobiology 2:77-86.

    CAS  Google Scholar 

  • Curutchet G, Pogliani C, Donati E. 1995. Indirect bioleaching of covellite by Thiobacillus thooxidans with an oxidant agent. Biotechnol Lett 17:1251-1256.

    CAS  Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF. 1970. A thermophilic acidophilic Mycoplasma isolated from a coal refuse pile. Science 170:1416-1418.

    PubMed  ADS  CAS  Google Scholar 

  • Demergasso C, Echeverría A, Escudero L, Gallguillos P, Zepeda V, Castillo D. 2005a. Comparison of fluorescent in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH) for visualization and enumeration of archaea and bacteria ratio in industrial heap bioleaching operations. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 843-851.

    Google Scholar 

  • Demergasso CS, Pedro A, Galleguillos P, Lorena V, Escudero G, Víctor J, Zepeda A, Castillo D, Casamayor EO. 2005b. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241-253.

    CAS  Google Scholar 

  • Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg KB. 2006. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol, online.

    Google Scholar 

  • Dopson M, Lindström EB. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb Ecol 48:19-28.

    PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL. 2003. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959-1970.

    PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL. 2004. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079-2088.

    PubMed  CAS  Google Scholar 

  • Drobner E, Huber H, Rachel R, Stetter KO. 1992. Thiobacillus plumbophilusspec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213-217.

    PubMed  CAS  Google Scholar 

  • Dufresne S, Bousquet J, Boissinot M, Guay R. 1996. Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positiv, spore-forming bacterium. Int J Syst Bacteriol 46:1056-1064.

    PubMed  CAS  Google Scholar 

  • Dziurla MA, Achouak W, Lam BT, Heulin T, Berthelin J. 1998. Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite. Appl Environ Microbiol 64:2937-2942.

    PubMed  CAS  Google Scholar 

  • Ebrahimi S, Morales FJF, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM. 2005. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Biotechnol Bioeng 90:462-472.

    PubMed  CAS  Google Scholar 

  • Edwards KJ, Gihiring TM, Banfield JF. 1999a. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627-3632.

    CAS  Google Scholar 

  • Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihiring TM, Cardona MM, Hu B, McGuire MM, Hamers RJ, Pace NR. 1999b. Geomicrobiology of pyrite (FeS 2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155-179.

    CAS  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF. 2000a. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796-1799.

    ADS  CAS  Google Scholar 

  • Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JF. 2000b. Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383-397.

    CAS  Google Scholar 

  • Ehrlich HL. 2002. Geomicrobiology. Marcel Dekker Inc., New York.

    Google Scholar 

  • Fowler TA, Crundwell FK. 1999. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65:5285-5292.

    PubMed  CAS  Google Scholar 

  • Fowler TA, Holmes PR, Crundwell FK. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987-2993.

    PubMed  CAS  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO. 1995. Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560-566.

    Google Scholar 

  • Garcia O, Bigham JM, Tuovinen OH. 1995a. Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can J Microbiol 41:508-514.

    CAS  Google Scholar 

  • Garcia O, Bigham JM, Tuovinen OH. 1995b. Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can J Microbiol 41:578-584.

    CAS  Google Scholar 

  • Ghauri MA, Johnson DB. 1991. Physiological diversity amongst some moderately thermophilic iron-oxidizing bacteria. FEMS Microbiol Ecol 85:327-334.

    CAS  Google Scholar 

  • Goebel BM, Stackebrandt E. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614-1621.

    PubMed  CAS  Google Scholar 

  • Golovacheva RS, Karavaiko GI. 1978. A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Microbiology 47:658-665.

    Google Scholar 

  • Golovacheva RS, Valieho-Roman KM, Troitskii AV. 1987a. Sulfurococcus mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur. Mikrobiologiya 56:100-107.

    CAS  Google Scholar 

  • Golovacheva RS, Zhukova IG, Nikultseva TP, Ostrovinskii DN. 1987b. Some properties ofSulfurococcus mirabilis, a new thermoacidophilic archaebacterium. Mikrobiologiya 56:281-287.

    CAS  Google Scholar 

  • Golovacheva RS, Golyshina OV, Karavaiko GI, Dorofeev AG, Pivovarova TA, Chernykh NA. 1992. A new ironoxidizing bacterium, Leptospirillum thermoferrooxidans sp. nov. Microbiology 61:744-750.

    Google Scholar 

  • Golyshina OV. Timmis KN. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277-1288.

    PubMed  CAS  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN. 2000. Ferroplasma acidiphilum gen. nov., sp nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997-1006.

    PubMed  CAS  Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R. 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853-4865.

    PubMed  Google Scholar 

  • González-Toril E, Garcia-Moyano A, Amils R. 2005. Phylogeny of prokaryotic microorganisms from the Tinto River. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 737-749.

    Google Scholar 

  • Grogan DW. 1989. Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710-6719.

    PubMed  CAS  Google Scholar 

  • Grogan D. 1991. Selectable mutant phenotypes of the extremely thermophilic archaea-bacterium Sulfolobus acidocaldarius. J Bacteriol 173:7725-7727.

    PubMed  CAS  Google Scholar 

  • Groudev SN, Groudeva VI. 1993. Microbial communities in four industrial copper dump leaching operations in Bulgaria. FEMS Microbiol Rev 11:261-268.

    CAS  Google Scholar 

  • Hallberg KB, Johnson DB. 2001. Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37-84.

    PubMed  CAS  Google Scholar 

  • Hallberg KB, Lindström EB. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiol 140:3451-3456.

    CAS  Google Scholar 

  • Hallberg KB, Dopson M, Lindstrom EB. 1996. Reduced sulfur compound oxidation by Thiobacillus caldus. J Bacteriol 178:6-11.

    PubMed  CAS  Google Scholar 

  • Hallberg KB, Thomson HEC, Boeselt I, Johnson DB. 2001. Aerobic and anaerobic sulfur metabolism by acidophilic bacteria. In: Ciminelli VST, Garcia Jr. O. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 423-431.

    Google Scholar 

  • Hallmann R, Friedrich A, Koops H-P, Pommerening-Röser A, Rohde K, Zenneck C, Sand W. 1993. Physiological characteristics of Thiobacillus ferrooxidansand Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol J 10:193-206.

    Google Scholar 

  • Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343-351.

    PubMed  CAS  Google Scholar 

  • Harrison Jr AP. 1981. Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31:327-332.

    MathSciNet  Google Scholar 

  • Harrison Jr AP. 1982. Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch Micobiol 131:68-76.

    Google Scholar 

  • Harrison Jr AP. 1983. Genomic and physiological comparisons between heterotrophic Thiobacilli and Acidiphilium cryptum: Thiobacillus versutussp. nov., andThiobacillus acidophilusnom. rev. Int J Syst Bacteriol 33:211-217.

    Google Scholar 

  • Harrison Jr AP. 1984. The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Ann Rev Microbiol 38:265-292.

    CAS  Google Scholar 

  • Hawkes RB, Franzmann PD, Plumb JJ. 2006a. Moderate thermophiles including “Ferroplasma cupricumulans” sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation. Hydrometallurgy 83:229–236.

    CAS  Google Scholar 

  • Hawkes RB, Franzmann PD, O’hara G, Plumb JJ. 2006b. Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. Extremophiles, online.

    Google Scholar 

  • Hazeu W, Batenburg-van der Vegte WH, Bos P, van der Pas RK, Kuenen JG. 1988. The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150:574-579.

    CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res 6:986-994.

    PubMed  CAS  Google Scholar 

  • Hippe H. 2000. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50:501-503.

    PubMed  Google Scholar 

  • Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y. 1998. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389-1398.

    PubMed  CAS  Google Scholar 

  • Huber H, Prangishvili D. 2004. Sulfolobales, Release 3.18. In: The prokaryotes, electronic version, 1994-2004. Springer-Verlag, New York.

    Google Scholar 

  • Huber H, Stetter KO. 1989a. Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 151:479-485.

    CAS  Google Scholar 

  • Huber H, Stetter KO. 1990. Thiobacillus cuprinus sp. nov., a novel facultativ organotrophic metal-mobilizing bacterium. Appl Environ Microbiol 56:315-322.

    PubMed  CAS  Google Scholar 

  • Huber H, Stetter KO. 1991. Sulfolobus metallicus sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372-378.

    CAS  Google Scholar 

  • Huber H, Stetter KO. 2001. Order III: Sulfolobales. In: Garrity G, ed. Bergey’s Manual of Systematic Bacteriology, 2 nd ed. Springer-Verlag, New York, Vol. 1, 198.

    Google Scholar 

  • Huber G, Huber H, Stetter KO. 1986. Isolation and characterization of new metal-mobilizing bacteria. Biotech Bioeng Symp 16:239-251.

    CAS  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO. 1989. Metallosphaera sedulagen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38-47.

    Google Scholar 

  • Jan R-J, Wu J, Chaw S-M, Tsai C-W, Tsen S-D. 1999. A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 49:1809-1816.

    PubMed  CAS  Google Scholar 

  • Jerez CA. 1997. Molecular methods for the identification and enumeration of bioleaching microorganisms. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 281-297.

    Google Scholar 

  • Johnson DB. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 23:205-218.

    Google Scholar 

  • Johnson DB. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307-317.

    CAS  Google Scholar 

  • Johnson DB, Hallberg KB. 2003. The microbiology of acidic mine waters. Res Microbiol 154:466-473.

    PubMed  CAS  Google Scholar 

  • Johnson DB, McGinness S. 1991. Ferric ion reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207-211.

    PubMed  CAS  Google Scholar 

  • Johnson DB, Roberto FF. 1997. Heterotrophic acidophiles and their roles in bioleaching of sulfide minerals. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 259-279.

    Google Scholar 

  • Johnson DB, Bacelar-Nicolau P, Okibe N, Yahya A, Hallberg K. 2001. Role of pure and mixed culures of Gram-positive eubacteria in mineral leaching. In: Ciminelli VST, Garcia Jr. O. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part A, 461-470.

    Google Scholar 

  • Johnson DB, Okibe N, Hallberg KB. 2005. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis. J Microbiol Meth 60:299-313. Erratum: J Microbiol Meth 63:216-217.

    Google Scholar 

  • Johnson DB, Stallwood B, Kimura S, Hallberg KB. 2006. Characteristics of Acidicaldus organovorus, gen. nov., sp. nov.; a novel thermo-acidophilic heterotrophic proteobacterium. Arch Microbiol 185:212-221.

    PubMed  CAS  Google Scholar 

  • Kamimura K, Higashino E, Kanao T, Sugio T. 2005. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Extremophiles 9:45-51.

    PubMed  CAS  Google Scholar 

  • Karavaiko GI, Golyshina OV, Troitskii AV, Valieho-Roman KM, Golovacheva RS, Pivovarova TA. 1994. Sulfurococcus yellowstoniisp. nov., a new species of iron- and sulphur-oxidizing thermoacidophilic archaebacteria. Microbiology 63:379-387.

    Google Scholar 

  • Karavaiko GI, Turova TP, Kondrat’eva TF, Lysenko AM, Kolganova TV, Ageeva SN, Muntyan LN, Pivovarova TA. 2003. Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53:113-119.

    PubMed  CAS  Google Scholar 

  • Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA, Egorova MA, Krasil’nikova EN, Zakharchuk LM. 2005. Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp thermotolerans’ strain K1 as Alicyclobacillus tolerans sp nov and Sulfobacillus disulfidooxidans Dufresne et al 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 55:941-947.

    PubMed  CAS  Google Scholar 

  • Kargi F, Robinson JM. 1985. Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius. Biotechnol Bioeng 27:41-49.

    CAS  Google Scholar 

  • Karsten C, Harneit K, Sand W, Stackebrandt, E, Schumann P. 2005. Characterization of novel iron-oxidizing bacteria. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 729-735.

    Google Scholar 

  • Kelly DP, Wood AP. 2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511-516.

    PubMed  Google Scholar 

  • Kepner Jr RL, Pratt JR. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603-615.

    PubMed  CAS  Google Scholar 

  • Kimura S, Hallberg KB, Johnson DB. 2005. Biodiversity of microbial populations in macroscopic “acid streamer” growths at an abandoned pyrite mine, elucidated using a combined cultivation-based and cultivation-independent approach. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress. co.za, 687-696.

    Google Scholar 

  • Kinnunen PHM, Puhakka JA. 2004. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor. Biotechnol Bioeng 85:697-705.

    PubMed  CAS  Google Scholar 

  • Kinnunen PHM, Puhakka JA. 2005. High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm. Process Biochem 40:3536-3541.

    CAS  Google Scholar 

  • Kishimoto N, Kosako Y, Tano T. 1993. Acidiphilium aminolytica sp. nov.: an acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. Curr Microbiol 27:131-136.

    CAS  Google Scholar 

  • Kishimoto N, Kosako Y, Wakao N, Tano T, Hiraishi A. 1995. Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 18:85-91.

    Google Scholar 

  • Kock D, Schippers A. 2006. Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy 83:167–175.

    CAS  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423-2429.

    PubMed  CAS  Google Scholar 

  • Konishi Y, Yoshida S, Asai S. 1995. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48:592-600.

    CAS  Google Scholar 

  • Kovalenko EV, Malakhova PT. 1983. The spore-forming iron-oxidizing bacterium Sulfobacillus thermosulfidooxidans. Mikrobiologiya 52:19-25 (in Russian).

    Google Scholar 

  • Kurosawa N, Itoh YH, Itoh T. 2003. Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. Int J Syst Evol Microbiol 53:1607-1608.

    PubMed  CAS  Google Scholar 

  • Küsel K, Dorsch T, Acker G, Stackebrandt E. 1999. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633-3640.

    PubMed  Google Scholar 

  • Lane DJ, Harrison Jr AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR. 1992. Evolutionary relationship among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269-278.

    PubMed  CAS  Google Scholar 

  • Liu C-Q, Plumb J, Hendry P. 2006. Rapid specific detection and quantification of Bacteria and Archaea involved in mineral sulfide bioleaching using real-time PCR. Biotechnol Bioeng 94:330-336.

    PubMed  CAS  Google Scholar 

  • Lizama HM, Suzuki I. 1991. Interaction of chalcopyrite and sphalerite with pyrite during leaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Can J Microbiol 37:304-311.

    CAS  Google Scholar 

  • Lockey C, Otto E, Long Z. 1998. Real-time fluorescence detection of a single DNA molecule. BioTechniques 24:744-746.

    PubMed  CAS  Google Scholar 

  • Ludwig W, Schleifer K-H. 2000. How quantitative is quantitative PCR with respect to cell counts? Syst Appl Microbiol 23:556-562.

    PubMed  CAS  Google Scholar 

  • Mackintosh ME. 1978. Nitrogen fixation byThiobacillus ferrooxidans. J Gen Microbiol 105:215-218.

    CAS  Google Scholar 

  • Mahmoud KK, Leduc LG, Ferroni GD. 2005. Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). J Microbiol Meth 61:33-45.

    CAS  Google Scholar 

  • Markosyan GE. 1972. A new iron-oxidizing bacterium Leptospirillum ferrooxidans nov. gen. nov. sp. Biol J Armenia 25:26-29 (in Russian).

    Google Scholar 

  • Marsh RM, Norris PR, LeRoux NW. 1983. Growth and mineral oxidation studies with Sulfolobus. In: Rossi G, Torma AE, eds. Recent Progress in Biohydrometallurgy. Associazione Mineraria Sarda. Iglesias, Italy, 71-81.

    Google Scholar 

  • McDonald IR, Kelly DP, Murrell JC, Wood AP. 1997. Taxonomic relationship of Thiobacillus halophilus, T. aquaesulis, and other species of Thiobacillus, as determined using 16S rDNA sequencing. Arch Microbiol 166:394-398.

    Google Scholar 

  • Melamud VS, Pivovarova TA, Tourova TP, Kolganova TV, Osipov GA, Lysenko AM, Kondrat’eva TF, Karavaiko GI. 2003. Sulfobacillus sibiricus sp nov., a new moderately thermophilic bacterium. Microbiology 72:605-612.

    CAS  Google Scholar 

  • Moreira D, Amils R. 1997. Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47:522-528.

    PubMed  CAS  Google Scholar 

  • Morita RY, ed. 1997. Bacteria in Oligotrophic Environments. Chapman & Hall, New York.

    Google Scholar 

  • Nadkarni M, Martin FE, Jacques NA, Hunter N. 2002. Determination of bacterial load by real-time PCR using a broad range (universal) probe and primer set. Microbiol 148:257-266.

    CAS  Google Scholar 

  • Norris PR. 1983. Iron and mineral oxidation studies with leptospirillum-like bacteria. In: Rossi G, Torma AE, eds. Recent Progress in Biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, Italy, 83-96.

    Google Scholar 

  • Norris PR, Parrott L. 1986. High temperature, mineral concentrate dissolution with Sulfolobus. In: Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, 355-365.

    Google Scholar 

  • Norris PR, Barr DW, Hinson D. 1988. Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Proceedings of the International Symposium, Warwick, Antony Rowe Ltd. Chippenham, Wiltshire, UK, 43-59.

    Google Scholar 

  • Norris PR, Murrell JC, Hinson D. 1995. The potential for diazotrophy in iron- and sulfur oxidizing acidophilic bacteria. Arch Microbiol 164:294-300.

    CAS  Google Scholar 

  • Norris PR, Clark DA, Owen JP, Waterhouse S. 1996. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiol 142:775-783.

    CAS  Google Scholar 

  • Norris PR, Burton NP, Foulis NAM. 2000. Acidophiles in bioreactor mineral processing. Extremophiles 4:71-76.

    PubMed  CAS  Google Scholar 

  • Novo MTM, De Souza AP, Garcia O, Ottoboni LMM. 1996. RAPD genomic fingerprinting differentiates Thiobacillus ferrooxidans strains. Syst Appl Microbiol 19:91-95.

    CAS  Google Scholar 

  • Okibe N, Johnson DB. 2004. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Biotechnol Bioeng 87:574-583.

    PubMed  CAS  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB. 2003. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation Appl Environ Microbiol 69:1936-1943.

    PubMed  CAS  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL. 2003. Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249-257.

    PubMed  CAS  Google Scholar 

  • Parro V, Moreno-Paz M. 2003. Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. PNAS 100:7883-7888.

    PubMed  ADS  CAS  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094-3101.

    PubMed  CAS  Google Scholar 

  • Pistorio M, Curutchet G, Donati R, Tedesco P. 1994. Direct zinc sulfide bioleaching by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Biotechnol Lett 16:419-424.

    CAS  Google Scholar 

  • Pizarro J, Jedlicki E, Orellana O, Romero J, Espejo RT. 1996. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl Environ Microbiol 62:1323-1328.

    PubMed  CAS  Google Scholar 

  • Pogliani C, Donati E. 2000. Immobilisation of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem 35:997-1004.

    CAS  Google Scholar 

  • Pronk JT, Johnson DB. 1993. Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol J 10:153-171.

    Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Ratouchniak J, Veloso F, Valdes J, Lefimil C, Silver S, Roberto F, Orellana O, Denizot F, Jedlicki E, Holmes D, Bonnefoy V. 2006. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 83:263–272.

    CAS  Google Scholar 

  • Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491-4498.

    PubMed  Google Scholar 

  • Rawlings DE. 1995. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV, eds. Biohydrometallurgical processing, Proceedings of the International Biohydrometallurgy Symposium IBS-95, Vina del Mar, Chile. University of Chile, Santiago de Chile, Vol. 2, 9-17.

    Google Scholar 

  • Rawlings DE. 1997. Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE, ed. Biomining: Theory, Microbes and Industrial Processes. Springer-Verlag, Berlin, 229-245.

    Google Scholar 

  • Rawlings DE. 2002. Heavy metal mining using microbes. Ann Rev Microbiol 56:65-91.

    CAS  Google Scholar 

  • Rawlings DE. 2005. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories (via www.uni-potsdam.de - PDF - 402 KB).

    Google Scholar 

  • Rawlings DE, Coram NJ, Gardner MN, Deane SM. 1999. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21 st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 777-786.

    Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W. 2003. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239-248.

    PubMed  CAS  Google Scholar 

  • Rossi G. 1990. Biohydrometallurgy. McGraw-Hill, Hamburg.

    Google Scholar 

  • Rzhepishevska OI, Lindstrom EB, Tuovinen OH, Dopson M. 2005. Bioleaching of sulfidic tailing samples with a novel, vacuum-positive pressure driven bioreactor. Biotechnol Bioeng 92:559-567.

    PubMed  CAS  Google Scholar 

  • Sakaguchi H, Torma AE, Silver M. 1976. Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans. Appl Environ Microbiol 31:7-10.

    PubMed  CAS  Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C. 1992. Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microb 58:85-92.

    CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A. 2001. (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching. Hydrometallurgy 59:159-175.

    CAS  Google Scholar 

  • Schippers A, Sand W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319-321.

    PubMed  CAS  Google Scholar 

  • Schippers A, Hallmann R, Wentzien S, Sand W. 1995. Microbial diversity in uranium mine waste heaps. Appl Environ Microbiol 61:2930-2935.

    PubMed  CAS  Google Scholar 

  • Schippers A, Jozsa P-G, Sand W. 1996. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424-3431.

    PubMed  CAS  Google Scholar 

  • Schippers A. 2004. Biogeochmistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW, eds. Sulfur biogeochemistry - Past and present. Special Paper 379. Geological Society of America, Boulder, Colorado, 49-62.

    Google Scholar 

  • Schippers A, Bosecker K. 2005. Bioleaching: Analysis of microbial communities dissolving metal sulfides. In: Barredo J-L, ed. Methods in Biotechnology, Vol. 18: Microbial Processes and Products. Humana Press Inc., Totowa, New York, 405-412.

    Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861-864.

    PubMed  ADS  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk H-P, Zillig W. 1995. Picrophilusgen. nov., fam. nov.: a novel aerobic, heterotrophic, thermo-acidophilic genus and family comprising archaea capable of growth around pH 0. Int J Syst Bacteriol 177:7050-7059.

    CAS  Google Scholar 

  • Schleper C, Pühler G, Klenk H-P, Zillig W. 1996. Picrophilus oshimaeand Picrophilus torridusfam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46:814-816.

    Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF. 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for generation of acid mine drainage. Science 279:1519-1522.

    PubMed  ADS  CAS  Google Scholar 

  • Segerer AH, Stetter KO. 1992. The order Sulfolobales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H, eds. The Prokaryotes, 2nd ed., Springer-Verlag, New York, 684-701.

    Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO. 1986. Acidianus infernus gen. nov., sp. nov., and Acidianusbrierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559-564.

    Google Scholar 

  • Segerer A, Langworthy TA, Stetter KO. 1988. Thermoplasma acidophilumandThermoplasma volcaniumsp. nov. from solfatara fields. Syst Appl Microbiol 10:161-171.

    Google Scholar 

  • Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. 2003. An improved protocol for quantification of freshwater actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928-2935.

    PubMed  CAS  Google Scholar 

  • Selenska-Pobell S, Otto A, Kutschke S. 1998. Identification and discrimination of thiobacilli using ARDREA, RAPD and rep-APD. J Appl Microbiol 84:1085-1091.

    CAS  Google Scholar 

  • Selenska-Pobell S, Kampf G, Flemming K, Radeva G, Satchanska G. 2001. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Ant Leeuwenh 79:149-161.

    CAS  Google Scholar 

  • Sharkey FH, Banat IM, Marchant R. 2004. Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795-3806.

    PubMed  CAS  Google Scholar 

  • Silver S, Torma AE. 1974. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Can J. Microbiol 20:141-147.

    CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM. 2006. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ Microbiol 8:804-815.

    PubMed  CAS  Google Scholar 

  • Stöhr R, Waberski A, Volker H, Tindall BJ, Thomm M. 2001. Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’.Int J Syst Evol Microbiol 51:1853-1862.

    PubMed  Google Scholar 

  • Stults JR, Snoeyenbos-West O, Methe B, Lovley DR, Chandler DP. 2001. Application of the 5’fluorogenic exonulease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microbiol 67:2781-2789.

    PubMed  CAS  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF. 2000. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays. Appl Environ Microbiol 66:4605-4614.

    PubMed  CAS  Google Scholar 

  • Takai K, Horikoshi K. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066-5072.

    PubMed  CAS  Google Scholar 

  • Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ito T, Yamasato K, Shioda M. 1996. Sulfolobus hakonensissp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382.

    PubMed  CAS  Google Scholar 

  • Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ. 2004. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by Bacteria and Archaea in the deep ocean. Appl Environ Microbiol 70:4411-4414.

    PubMed  CAS  Google Scholar 

  • Temple KL, Colmer AR. 1951. The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol 62:605-611.

    PubMed  CAS  Google Scholar 

  • Tobita M, Yokozeki M, Nishikawa N, Kawakami Y. 1994. Pyrite oxidation by Sulfolobus acidocaldarius. Biosci Biotech Biochem 58:771-772.

    CAS  Google Scholar 

  • Torma AE. 1971. Microbial oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Rev Can Biol 30:209-216.

    PubMed  CAS  Google Scholar 

  • Torma AE. 1978. Oxidation of gallium sulfides by Thiobacillus ferrooxidans. Can J Microbiol 24:888-891.

    PubMed  CAS  Google Scholar 

  • Torma AE, Gabra GG. 1977. Oxidation of stibnite by Thiobacillus ferrooxidans. Ant Leeuwenh 43:1-6.

    CAS  Google Scholar 

  • Torma AE, Sakaguchi H. 1978. Relation between the solubility product and the rate of metal sulfide oxidation by Thiobacillus ferrooxidans. J Ferment Technol 56:173-178.

    CAS  Google Scholar 

  • Tributsch H, Bennett JC. 1981. Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Tech Biotechnol 31:627-635.

    CAS  Google Scholar 

  • Tuovinen OH, Bhatti TM, Bigham JM, Hallberg KB, Garcia Jr O, Lindström EB. 1994. Oxidative dissolution of arsenopyrite by mesophilic and moderately acidophilic thermophiles. Appl Environ Microbiol 60:3268-3274.

    PubMed  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37-43.

    PubMed  ADS  CAS  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF. 2005. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp nov from an acidophilic microbial community. Appl Environ Microbiol 71:6319-6324.

    PubMed  CAS  Google Scholar 

  • Urakami T, Tamaoka J, Suzuki KI, Komagata K. 1989. Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39:50-55.

    CAS  Google Scholar 

  • Vásquez M, Espejo RT. 1997. Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentrations. Appl Environ Microbiol 63:332-334.

    PubMed  Google Scholar 

  • Vitaya VB, Koizumi J-I, Toda K. 1994. A kinetic assessment of substantial oxidation by Sulfolobus acidocaldarius in pyrite oxidation. J Ferment Bioeng 77:528-534.

    CAS  Google Scholar 

  • Waksman SA, Joffe JS. 1922. Microorganisms concerned in the oxidation of sulfur in the soil. II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J Bacteriol 7:239-256.

    PubMed  CAS  Google Scholar 

  • Waltenbury DR, Leduc LG, Ferroni GD. 2005. The use of RAPD genomic fingerprinting to study relatedness in strains of Acidithiobacillus ferrooxidans. J Microbiol Meth 62:103-112.

    CAS  Google Scholar 

  • Wawrik B, Paul JH, Tabita FR. 2002. Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl Environ Microbiol 68:3771-3779.

    PubMed  CAS  Google Scholar 

  • Wenderoth DF, Abraham W-R. 2005. Microbial indicator groups in acidic mining lakes. Environ Microbiol 7:133-139.

    PubMed  CAS  Google Scholar 

  • Wilson M, Bakermans C, Madsen EL. 1999. In situ, real-time catabolic gene expression: extraction and characterization of naphtalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 65:80-87.

    PubMed  CAS  Google Scholar 

  • Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22:130-138.

    PubMed  CAS  Google Scholar 

  • Wulf-Durand P de, Bryant LJ, Sly LI. 1997. PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl Environ Microbiol 63:2944-2948.

    PubMed  Google Scholar 

  • Yahya A, Roberto FF, Johnson DB. 1999. Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 729-739.

    Google Scholar 

  • Yamashita S, Uchimura T, Komagata K. 2004. Emendation of the genus Acidomonas Urakami, Tamaoka, Suzuki and Komagata 1989. Int J Syst Evol Microbiol 54:865-870.

    PubMed  CAS  Google Scholar 

  • Yarzábal A, Duquesne K, Bonnefoy V. 2003. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur- and in ferrous iron media. Hydrometallurgy 71:107-114.

    Google Scholar 

  • Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V. 2004. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113-2123.

    PubMed  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz J. 1980. The Sulfolobus-"Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259-269.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Schippers, A. (2007). Microorganisms Involved in Bioleaching and Nucleic Acid-Based Molecular Methods for Their Identification and Quantification. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_1

Download citation