Skip to main content

Hydrogen Sulfide Removal From Gaseous Effluents

  • Chapter

Keywords

  • Hydrogen Sulfide
  • Polyurethane Foam
  • Gaseous Effluent
  • Thiobacillus Ferrooxidans
  • Hydrogen Sulfide Removal

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-5589-7_15
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5589-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anabtawi JA, Al-Jarallah AM, Aitani AM. 1992. Potential for diesel fuel production by hydroprocessing of middle distillates. Energy Sources 14: 155-167.

    CAS  CrossRef  Google Scholar 

  • Anerousis JP, Whtitman SK. 1984. An updated examination of gas sweetening by the iron sponge process. SPE 13280, Houston, Texas.

    Google Scholar 

  • Armentia H, Webb C. 1992. Ferrous sulfate oxidation using Thiobacillus ferrooxidans cells immobilized in polyurethane foam support particles. Appl Microbiol Biotechnol 36: 697-700.

    CrossRef  CAS  Google Scholar 

  • Asai S, Konishi Y, Yabu T. 1990. Kinetics of absorption of hydrogen sulfide into aqueous ferric sulfate solutions. AIChE J 36: 1331-1338.

    CrossRef  CAS  Google Scholar 

  • Astarita G, Savage DW, Longo JM. 1983. Gas treating with chemical solvents. John Wiley & Sons, New York.

    Google Scholar 

  • Atkinson B. 1981. Immobilized biomass – a basis for process development in wastewater treatment. In: Cooper PF, Atkinson B, eds. Biological fluidized bed treatment of water and wastewater. Ellis Horwood, Chichester, 22-34.

    Google Scholar 

  • Berzaczy L, Niedermayer E, Kloimstein L, Windperger A. 1990. Biological exhaust gas purification in the rayon fiber manufacture. Chem Biochem Eng Q 2: 201-203.

    Google Scholar 

  • Berzaczy L, Etzenberger W, Kloimstein L, Niedermayer E, Schmidt A, Windsperger A. 1990. Waagner Biro Aktiengesellschaft, Glanzstoff Austria GesmbH. Procedure for microbiological transformation of sulfur containing harmful components in exhaust gases. US Patent 4,968,622.

    Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM. 2001. Developments in odor control and waste gas treatment biotechnology: a review. Biotechnol Adv 19: 35-63.

    PubMed  CrossRef  CAS  Google Scholar 

  • Candehead P, Sublette KL. 1990. Oxidation of hydrogen sulfide by Thiobacilli. Biotechnol Bioeng 35: 1150-1154.

    CrossRef  Google Scholar 

  • Carnell P. 1986. Gas sweetening with a new fixed bed absorbent. In: Proceedings of Laurance Reid Gas Conditioning Conference. University of Oklahoma, Norma OK, 3-5.

    Google Scholar 

  • Carranza F, García MJ. 1990. Kinetic comparison of support materials in the bacteria ferrous iron oxidation in a packed-bed columns. Biorecovery 2: 15-27.

    CAS  Google Scholar 

  • Cho K, Hirai M, Shoda M. 1992. Degradation of hydrogen sulfide by Xanthomonassp. strain DY44 isolated from peat. Appl Environ Microbiol 58: 1183-1189.

    PubMed  CAS  Google Scholar 

  • Cho K, Zhang L, Hirai M, Shoda M. 1991. Removal characteristics of hydrogen sulfide and methanethiol by Thibacillus sp. J Ferm Bioeng 71: 44-49.

    CrossRef  CAS  Google Scholar 

  • del Olmo C, Alcon A, Santos VE, García-Ochoa F. 2005. Modelling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfuration: influence of media composition Enzyme Microb Technol 37: 157-166.

    CrossRef  CAS  Google Scholar 

  • Dillon ET. 1991. Gas sweetening with a novel and selective alkanolamine. In: Proceeding of the 17th GPA Annual Convention.

    Google Scholar 

  • Dobbs JB. 1986. Gas sweetening with an effective one-step process. In: Proceedings of 1986 Gas Conditioning Conference, University of Oklahoma, Norma OK.

    Google Scholar 

  • European Union 1998. EU, Directive 98/70/EC.

    Google Scholar 

  • Fong HL, Kushner DS, Scott RT. 1987. Gas desulfurization using Sulferox. In: Proceedings of Laurence Reid Gas Conditioning Conference, University of Oklahoma, Norman OK, 2-4.

    Google Scholar 

  • Frazier HD, Kohl AL. 1950. Selective absorption of H2S from gas streams. Ind Eng Chem 42: 2282-2292.

    CrossRef  Google Scholar 

  • Freund MS, Shreve GA, Wilisch WCA, Lewis NS. 1994. H2S Chemistry involved in liquid redox processes: mechanisms of reactions, new ligands and new sensors. In: American Institute of Chemical Engineers, Atlanta, Georgia, 17-21.

    Google Scholar 

  • Gadre RV. 1989. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol Bioeng 34: 410-414.

    CrossRef  CAS  Google Scholar 

  • García MJ, Palencia I, Carranza F. 1989. Biological ferrous iron oxidation in packed-bed columns with low-grade sulfide mineral as support. Process Biochem 24: 84-87.

    Google Scholar 

  • Goar BG, Lagas JA, Borsboom J, Heijkoop G. 1991. Superclaus Updates: How the process is performing worldwide. In: British Sulfur’s 19th International Conference, New Orleans.

    Google Scholar 

  • Gómez JM, Caro I, Cantero D. 1996. Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulfate solutions. J Biotechnol 48: 147-152.

    CrossRef  Google Scholar 

  • Gómez JM, Cantero D, Webb C. 2000. Immobilization of Thiobacillus ferrooxidanscells on nickel alloy fibre for ferrous sulfate oxidation. Appl Microbiol Biotechnol 53: 722-725.

    CrossRef  Google Scholar 

  • Grishin SI, Tuovinen OH. 1988. Fast kinetics of Fe+ 2 oxidation in packed-bed reactors. Appl Environ Microbiol 54: 3092-3100.

    PubMed  CAS  Google Scholar 

  • Hardison LC. 1992. Update on LO-CAT process developments and commercial experience. In: GRI Liquid Redox Sulfur Recovery Conference, Austin

    Google Scholar 

  • Hass RW, Ingalls MN, Trinker TA, Goar BG, Purgason RS. 1981. Process meets sulfur recovery needs. Hydro Process 60: 104-107.

    CAS  Google Scholar 

  • Imaizumi T. 1986. Some industrial applications of inorganic microbial oxidation in Japan. Biotechnol Bioeng Sym 16: 363-371.

    CAS  Google Scholar 

  • Janssen AJH, de Hoop K, Buisman CJN. 1997. The removal of H2S from air at a petrochemical plant. In: Proceedings of International Symposium Biological Waste Cleaning, Maastricht..

    Google Scholar 

  • Janssen AJH, Arena B, Kijlstra WS. 2000. New developments of THIOPAQ technology for the removal of H2S from gaseous steams. In: Proceedings of Sulfur’2000, San Francisco.

    Google Scholar 

  • Janssen AJH, Ruitenberg R, Buisman CJN. 2001. Industrial applications of new sulfur biotechnology. Water Sci Technol 44: 85-90.

    PubMed  CAS  Google Scholar 

  • Jensen AB, Webb C. 1995. Treatment of H2S containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17: 2-10.

    CrossRef  CAS  Google Scholar 

  • Kai T, Takahashi T, Shirakawa Y, Kawabata Y. 1990. Decrease in iron oxidizing activity of Thiobacillus ferrooxidans adsorbed on activated carbon. Biotechnol Bioeng 36: 1105-1109.

    CrossRef  CAS  Google Scholar 

  • Karamanev DG. 1991. Model of the biofilm structure of Thiobacillus ferrooxidans.J Biotechnol 20: 51-64.

    CrossRef  CAS  Google Scholar 

  • Karamanev DG, Nikolov LN. 1988. Influence of some physicochemical parameters on bacterial activity of biofilm: ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnol Bioeng 31: 295-299.

    CrossRef  CAS  Google Scholar 

  • Ketner R, Liermann N. 1987. MODOP [Mobil Oil Direct Oxidation Process] – a new process to reduce emissions of Claus units. Erdgas Kohle 103: 520-524.

    Google Scholar 

  • Kohl AL. 1951. Selective H2S Absorption-A review of available processes. Petrol Processing 6: 26-31.

    CAS  Google Scholar 

  • Kohl A, Nielsen R. 1997. Gas purification. Gulf Publishing Company.

    Google Scholar 

  • Lagas JA, Borsboom J, Berben PH. 1988. Superclaus-The Answer to Claus plant limitations. In: Canadian Chemical Engineering Conference, Edmonton, Canada.

    Google Scholar 

  • Leduc LG, Ferroni FG. 1994. The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Rev 14: 103-120.

    CrossRef  CAS  Google Scholar 

  • Magota H, Shiratori Y. 1988. Dowa Mining. Treatment of sour natural gas containing hydrogen sufide. Japanese Patent 63,205,124.

    Google Scholar 

  • Maka A, Cork DJ. 1990. Introduction to the sulfur microorganisms and their applications in the environment and industry. Dev Ind Microbiol 31: 99-102.

    CAS  Google Scholar 

  • Manning WP, Rehm SJ, Schmuhl JL. 1981. Method of removing hydrogen sulfide form gas mixtures. US Patent 4,276,271.

    Google Scholar 

  • Mesa MM, Andrades JA, Macías M, Cantero D. 2004. Biological oxidation of ferrous iron: study of bioreactor efficiency. J Chem Technol Biotechnol 79: 163-170.

    CrossRef  CAS  Google Scholar 

  • Miller FE, Kohl AL. 1953. Selective absorption of hydrogen sulfide. Oil Gas J 51: 175-183.

    CAS  Google Scholar 

  • Nakamura K, Noike T, Matsumoto J. 1986. Effect of operation conditions on biological Fe+ 2 oxidation with rotating biological contactors. Water Res 20: 73-77.

    CrossRef  CAS  Google Scholar 

  • Nemati M, Webb C. 1996. Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 46: 250-255.

    CrossRef  CAS  Google Scholar 

  • Nemati M, Harrion STL, Hansford GS, Webb C. 1998. Biological oxidation of ferrous sulfate by Thiobacillus ferrooxidans: a review on the kinetics aspects. Biochem Eng J 1: 171-190.

    CrossRef  CAS  Google Scholar 

  • Neumann DW, Lynn S. 1984. Oxidative absorption of H2S and O2 by iron chelate solutions. AIChE J 30: 62-67.

    CrossRef  CAS  Google Scholar 

  • Neumann W, Röckauf H, Volk N, Michael A, Forkmann R. 1990. Method for removal of hydrogen sulfide from a combustible waste gas. European patent EP 402,704.

    Google Scholar 

  • Nikolov LN, Karamanev DG. 1987. Experimental study of the inverse fluidized bed biofilm reactor. Can J Chem Eng 65: 214-217.

    CAS  CrossRef  Google Scholar 

  • Nikolov LN, Mehochev D, Dimitrov D. 1986. Continous bacterial ferrous iron oxidation by Thiobacillus ferrooxidans in rotating biological contactors. Biotechnol Lett 8: 707-710.

    CrossRef  CAS  Google Scholar 

  • Olem H, Unz RF. 1977. Acid mine drainage treatment with rotating biological contactors. Biotechnol Bioeng 19: 1475-1491.

    CrossRef  CAS  Google Scholar 

  • Olem, H. and Unz, R.F. 1980. Rotating-disc biological treatment of acid mine drainage. J Wat Pollut Control Fed 52: 257-269.

    CAS  Google Scholar 

  • Pagella C, Silvestri P, De Faveri DM. 1996. H2S gas treatment with Thiobacillus ferrooxidans: overall process performance and the chemical step. Chem Eng Res Des 74: 123-132.

    CAS  Google Scholar 

  • Pagella C, Zambelli L, Silvestri P, De Faveri DM. 1996. Hydrogen sulfide gas treatment with Thiobacillus ferrooxidans. Process performance and stability. Chem Eng Technol 19: 378-385.

    CrossRef  CAS  Google Scholar 

  • Pagella C, Perego P, Zilli M. 1996. Biotechnological H2S gas treatment with Thiobacillus ferrooxidans. Chem Eng Technol 19: 78-88.

    Google Scholar 

  • Pogliani C, Donati E. 2000. Immobilization of Thiobacillus ferrooxidans: importance of jarosite precipitation. Process Biochem 35: 997-1004.

    CrossRef  CAS  Google Scholar 

  • Satoh H, Yoshizawa J, Kametani S. 1988. Bacteria help desulfurize gas. Hydrocarbon Proc Int Ed 67: 76D–76F.

    CAS  Google Scholar 

  • Schaack JP, Chan F. 1989. Hydrogen sulfide scavenging-1. Formaldehyde-methanol, metallic oxide agents head scavengers list processes. Oil Gas J 87: 51-55.

    CAS  Google Scholar 

  • Selvaraj PT, Litle MH, Kaufman EN. 1997. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria. Biotechnol Progress 13: 583-589.

    CrossRef  CAS  Google Scholar 

  • Shennan JL. 1996. Microbial attack on sulfur-containing hydrocarbons: implications for the biodesulfurization of oils and coals. J Chem Technol Biotechnol 67: 109-123.

    CrossRef  CAS  Google Scholar 

  • Sivalls CR. 1982. Slurrisweet acid gas treating process- In: Proceedings of Gas Conditioning Conference, University of Oklahoma, Norman OK.

    Google Scholar 

  • Smith RM, Martell AE. 1989. Critical stabilility constants. In: Inorganic Complexes, Vol 4, Plenum Press, New York.

    Google Scholar 

  • Sonta H, Shiratori T. 1990. Dowa Mining Co. Ltd. Method of treating H2S containing gases. US Patent 4,931,262.

    Google Scholar 

  • Sublette KL. 1987. Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans.Biotechnol Bioeng 29: 690-695.

    CrossRef  CAS  Google Scholar 

  • Sublette KL, Sylvester ND. 1987a. Oxidation of hydrogen sulfide by Thiobacillus denitrificans: desulfurization of natural gas. Biotechnol Bioeng 29: 249-257.

    CrossRef  CAS  Google Scholar 

  • Sublette KL, Sylvester ND. 1987b. Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotechnol Bioeng 29: 753-758.

    CrossRef  CAS  Google Scholar 

  • Sublette KL, Sylvester ND. 1987c. Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs. Biotechnol Bioeng 29: 759-761.

    CrossRef  CAS  Google Scholar 

  • Wichlacz PL. 1981. Fixed film biokinetics of ferrous iron oxidation. Biotechnol Bioeng Symp 11: 493-504.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gómez, J.M., Cantero, D. (2007). Hydrogen Sulfide Removal From Gaseous Effluents. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_15

Download citation