Skip to main content

Bioflotation And Bioflocculation Of Relevance To Minerals Bioprocessing

  • Chapter

Keywords

  • Extracellular Polymeric Substance
  • Sulfide Mineral
  • Acidithiobacillus Ferrooxidans
  • Thiobacillus Ferrooxidans
  • Paenibacillus Polymyxa

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1-4020-5589-7_14
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-5589-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand P, Modak JM, Natarajan KA. 1996. Biobeneficiation of bauxite using Bacillus polymyxa: calcium and iron removal. Int J Miner Process 48: 51-60.

    CrossRef  CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD. 1993. Molecular identification of rRNA Group 3 Bacilli using a PCR probe test. Antonie van leeuwenhoek 64: 253-260.

    PubMed  CrossRef  CAS  Google Scholar 

  • Atkins AS, Bridgewood EW, Davis AJ. 1987. A study of the suppression of pyritic sulfur in coal flotation by Thiobacillus ferrooxidans. Coal Prep 5: 1-13.

    CAS  CrossRef  Google Scholar 

  • Attia YA, Elzeky MA. 1985. Biosurface modification in the separation of pyrite from coal by froth flotation in processing and utilization of high sulfur coals. In: Attia YA, ed. Elsevier, Amsterdam, 673-682.

    Google Scholar 

  • Attia YA, Elzeky MA, Ismail M. 1993. Enhanced separation of pyrite from oxidized coal by froth flotation using surface modification. Int J Miner Process 37: 61-71.

    CrossRef  CAS  Google Scholar 

  • Bagdigian RM, Myerson AS. 1986. The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 28: 467-479.

    CrossRef  CAS  Google Scholar 

  • Bernstein RA. 1972. Waste treatment with microbial nucleo-protien flocculating agent, US Patent No. 3,684, 706.

    Google Scholar 

  • Blake RC, Elizabeth AS, Howard GT. 1994. Solubilization of minerals by bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite and sulfur. App Environ Microbiol 60: 3349-3357.

    CAS  Google Scholar 

  • Capes CE, McIlhinney AE, Sirianni AF, Puddington IE. 1973. Bacterial oxidation in upgrading pyritic coals. Can Min Metall Bull 66: 88-91.

    CAS  Google Scholar 

  • Chandraprabha MN, Natarajan KA, Modak JM. 2004a. Selective separation of pyrite and chalcopyrite by biomodulation. Coll Surf B 37: 93-100.

    CrossRef  CAS  Google Scholar 

  • Chandraprabha MN, Natarajan KA, Somasundaran P. 2004b. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans. J Colloid Interface Sci 276: 323-332.

    CrossRef  CAS  Google Scholar 

  • Chandraprabha MN, Natarajan KA, Somasundaran P. 2005. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans. Int J Miner Process 75: 113-122.

    CrossRef  CAS  Google Scholar 

  • Chandraprabha MN, Natarajan KA. 2006. Surface chemical and flotation behavior of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans. Hydrometallurgy, in press.

    Google Scholar 

  • Chapelle FH. 2001. Ground-Water Microbiology and Geochemistry, 2 ed., Wiley, New York.

    Google Scholar 

  • Das A, Hanumantha Rao K, Sharma PK, Natarajan KA, Forssberg KSE. 1999. Surface chemical and adsorption studies using Thiobacillus ferrooxidans with reference to bacterial adhesion to sulfide minerals. Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrometallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 697-707.

    Google Scholar 

  • Deo N, Natarajan KA. 1997a. Surface modification and biobeneficiation of some oxide minerals using Bacillus polymyxa, Min Metall Process 14: 32-39.

    CAS  Google Scholar 

  • Deo N, Natarajan KA. 1997b. Interaction of Bacillus polymyxa with some oxide minerals with reference to mineral beneficiation and environmental control. Miner Eng 10: 1339-1354.

    CrossRef  CAS  Google Scholar 

  • Deo N, Natarajan KA. 1998. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. Int J Miner Process 55: 41-60.

    CrossRef  CAS  Google Scholar 

  • Deo N, Natarajan KA, Somasundaran P. 2001. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. Int J Miner Process 62: 27-39.

    CrossRef  CAS  Google Scholar 

  • Deshpande RJ, Subramanian S, Natarajan KA. 2001. Effect of bacterial interaction with Thiobacillus ferrooxidans on the floatability of spahlerite and pyrite. In: Padmanabhan NPH, Sreenivas T, Srinivas K, eds. Proceedings of the International Seminar on Mineral Processing Technology. Allied Publishers Limited, New Delhi, 159-161.

    Google Scholar 

  • Deshpande RJ, Subramanian S, Natarajan KA. 2004. Surface-chemical studies on pyrite and arsenopyrite using Acidithiobacillus ferrooxidans. In: Rao GV, Misra VN, eds. Proceedings of the International Seminar on Mineral Processing Technology. Allied Publishers Limited, New Delhi, 668-675.

    Google Scholar 

  • Devasia P, Natarajan KA, Sathyanarayana DN, Ramananda Rao G. 1993. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl Environ Microbiol 59: 4051-4055.

    PubMed  CAS  Google Scholar 

  • Devasia P, Natarajan KA, Ramananda Rao G. 1996. Role of bacterial growth conditions and adhesion in the bioleaching of chalopyrite by Thiobacillus ferrooxidans.Miner Metall Process 13: 82-88.

    CAS  Google Scholar 

  • Dogan ZM, Ozbayoglu G, Hicyilmaz C, Sarikaya M, Ozcengiz G. 1985. Bacterial leaching versus bacterial conditioning and flotation in desulfurization of coal. In: Proceedings of the XV Int Miner Process Congr. Cannes, France, Vol 2, 304-313.

    Google Scholar 

  • Dogan ZM, Ozbayoglu G, Hicyilmaz C, Sarikaya M, Ozcengiz G. 1986. Bacterial leaching versus bacterial conditioning and flotation in desulfurization three different coals. In: Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy. Elsevier, New York, 165-170.

    Google Scholar 

  • Dubel J, Smith RW, Misra M, Chen S. 1992. Microorganisms as chemical reagents: the hematite system. Miner Eng 5: 547-556.

    CrossRef  CAS  Google Scholar 

  • Dugan PR. 1987. The function of microbial polysaccharides in bioflocculation and biosorption of metal ions. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems. Elsevier, Amsterdam, 337-350.

    Google Scholar 

  • Elzeky MA, Attia YA. 1987. Coal slurries desulfurization by flotation using thiophilic bacteria for pyrite depression. Coal Prep 5: 15-37.

    CAS  CrossRef  Google Scholar 

  • Ehrlich EC, Brierley CL. 1990. Microbial Mineral Recovery. McGraw-Hill, New York.

    Google Scholar 

  • Finnerty WR, Singer ME. 1988. A microbial surfactant: Genetic engineering and applications. In: Attia A, Moudgil BM, Chander S. eds. Interfacial Phenomena in Biotechnology and Materials Processing, Elsevier, Amsterdam, 75-88.

    Google Scholar 

  • Gaudin AM. 1987. Principles of Mineral Dressing, 5th ed. Tata McGraw Hill, New Delhi, 231-238.

    Google Scholar 

  • Gary JH, Fled IL, Davis EG. 1963. Chemical and physical beneficiation of Florida phosphate slimes. USBM RI 6163, 33-34.

    Google Scholar 

  • Groudev SN, Groudeva VI. 1986. Biological leaching of aluminium from clays. In: Biotechnol Bioeng Symp. Wiley, New York, 91-99.

    Google Scholar 

  • Groudeva VI, Groudev SN. 1983. Bauxite dressing by means of Bacillus circulans.Travaux ICSOBA 13: 257-263.

    Google Scholar 

  • Gottschalk G. 1989. Nutrition of bacteria. In: Starr MP, ed. Bacterial Metabolism, Springer, New York, 1-10.

    Google Scholar 

  • Haas SR, Nascimento FR, Schneider IAH, Gaylarde C. 1999. Flocculation of fine fluorite particles with Coryevacterium xerosis. Revista de Microbiologia 30: 225-230.

    CrossRef  CAS  Google Scholar 

  • Haas SR, Nascimento FR, Schneider IAH. 2000. Flocculation of fine calcite particles with Coryevacterium xerosis. In: Proceedings of the XXI Int Miner Process Congr, Rome, Vol A, 57-61.

    Google Scholar 

  • Hammond SM, Lambert PA, Rycroft AN. 1984. The Bacterial Cell Surface, Kapitan Szabo, Washington DC.

    Google Scholar 

  • Hancock IC. 1991. Microbial cell surface architecture. In: Mozes N, Handley PS, Busscher HJ, Rouxhet PG, eds. Microbial Cell Surface Analysis, VCH, New York, 22-59.

    Google Scholar 

  • Hanumantha Rao K, Das A, Sharma PK. 1998. Microbes adsorption on sulfide minerals and bioflotation. In: Proc Konf Mineralteknik, Föreningen Mineralteknisk Forskning, MinFo, Stockhom, 91-110.

    Google Scholar 

  • Hanumantha Rao K, Forssberg KSE. 2001. Minerals Bioprocessing IV. Int. J Miner Process 62: 1-332.

    CrossRef  CAS  Google Scholar 

  • Harada T, Kuniyoshi N. 1985. Effects of bacterial oxidation on the floatability of pyrite, J Inst Min Metal Inst Japan 101: 719-724.

    CAS  Google Scholar 

  • Harris RH, Mitchell R. 1973. The role of polymers in microbial aggregation. In: Starr MP, Ingraham JL, Raffel S, eds. Annual Reviews of Microbiology, Annual Reviews Inc, Palo Alto, 27, 27-50.

    Google Scholar 

  • Holmes DS, Smith RW. 1995. Minerals Bioprocessing-II, The Minerals, Metals and Materials Society, Pennsylvania.

    Google Scholar 

  • Hosseini TR, Kolahdoozan M, Tabatabaei YSM, Oliazadeh M, Noaparast M, Eslami A, Manafi Z, Alfantazi A. 2005. Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferrooxidans bacteria. Miner Eng 18: 371-374.

    CrossRef  CAS  Google Scholar 

  • James AM. 1991. Charge properties of microbial cell surfaces. In: Mozes N, Handley PS, Busscher HJ, Rouxhet PG, eds. Microbial Cell Surface Analysis, VCH, New York, 221-261.

    Google Scholar 

  • Karavaiko GI, Avakyan ZA, Ogurtsava LV, Safanova OF. 1989. Microbiological processing of bauxite. In: Salley J, McGready RGL, Wichlacz L, eds. Biohydrometallurgy, CANMET, Ottawa, 93-102.

    Google Scholar 

  • Kargi F, Robinson JM. 1985. Biological removal of pyretic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarious, Biotechnol Bioeng 27: 41-49.

    CrossRef  CAS  Google Scholar 

  • Kawatra SK, Eisele TC, Bagley ST. 1989. Studies of pyrite dissolution in Pachna tanks and depression pyrite flotation by bacteria. In: Biotechnology in Minerals and Metal Processing, SME/AIME, 55-61.

    Google Scholar 

  • Kolahdoozan M, Tabatabaei SM, Yen WT, Hosseini Tabatabaei R, Shahverdi AR, Oliazadeh M, Noaparast M, Eslami A, Manafi Z. 2004. Bioflotation of low grade Sarcheshmeh Copper sulfide. Trans Indian Inst Met 57: 485-490.

    CAS  Google Scholar 

  • Long S, Wagner F. 1987. Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds. Biosurfactants and Biotechnology, Marcel Dekker, New York, 21-46.

    Google Scholar 

  • Lyalikova NN, Lyubavina LL. 1986. On the possibility of using a culture of Thiobacillus ferrooxidans to separate antimony and mercury sulfides during flotation. In: Lawrence RW, Branion RMR, Ebner HG, eds. Fundamental and Applied Biohydrometallurgy, Elsevier, New York, 403-406.

    Google Scholar 

  • Mankad T, Nauman EB. 1992. Effect of oxygen on steady state product distribution in Bacillus polymyxa fermentations. Biotechnol Bioeng 40: 413-426.

    CrossRef  CAS  Google Scholar 

  • Mesquita LMS, Lins FF, Torem ML. 2003. Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system. Int J Miner Process 71: 31-44.

    CrossRef  CAS  Google Scholar 

  • Misra M, Smith RW, Dubel J. 1991. Bioflocculation of finely divided minerals. In: Smith RW, Misra M, eds. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania, 91-103.

    Google Scholar 

  • Misra M, Chen S, Smith RW, Raichur AM. 1993. Mycobacterium phlei as a flotation collector for hematite. Miner Metall Process 10: 170-175.

    CAS  Google Scholar 

  • Misra M, Chen S. 1995. The effect of growth medium of Thiobacillus ferrooxidans on pyrite and galena flotation. In: Holmes DS, Smith RW, eds. Minerals Bioprocessing II, The Minerals, Metals and Materials Society, Pennsylvania, 313-322.

    Google Scholar 

  • Misra M, Bukka K, Chen S. 1996. The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Miner Eng 9: 157-168.

    CrossRef  CAS  Google Scholar 

  • Modak JM, Vasan SS, Natarajan KA. 1999. Calcium removal from bauxite using Bacillus polymyxa.Miner Metall Process 16: 6-12.

    CAS  Google Scholar 

  • Murphy D. 1952. Structure of levan produced by Bacillus polymyxa. Can J Chem 30: 872-878.

    CrossRef  CAS  Google Scholar 

  • Nagaoka T, Ohmura N, Saiki H. 1999. A Novel mineral flotation process using Thiobacillus ferrooxidans, Appl Env Microbiol 65: 3588-3593.

    CAS  Google Scholar 

  • Natarajan KA, Modak JM, Anand P. 1997. Some microbiological aspects of bauxite mineralisation and beneficiation. Miner Metall Process 14: 47-53.

    CAS  Google Scholar 

  • Natarajan KA, Deo N. 2001. Role of bacterial interation and bioreagents in iron ore flotation. Int J Miner Process 62: 143-157.

    CrossRef  CAS  Google Scholar 

  • Natarajan KA, Das A. 2003. Surface chemical studies on ‘Acidithiobacillus’ group of bacteria with reference to mineral flotation. Int J Miner Process 72: 189-198.

    CrossRef  CAS  Google Scholar 

  • Ogurtsava LV, Karavaiko GI, Avakyan ZA, Korenevskii AA. 1990. Activity of various microorganisms in extracting elements from bauxite. Microbiology 58: 774-780.

    Google Scholar 

  • Patra P, Natarajan KA. 2003. Microbially induced flocculation and flotation for pyrite separation from oxide gangue minerals. Miner Eng 16: 965-973.

    CrossRef  CAS  Google Scholar 

  • Patra P, Natarajan KA. 2004a. Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. Int J Miner Process 74: 143-155.

    CrossRef  CAS  Google Scholar 

  • Patra P, Natarajan KA. 2004b. Microbially induced flocculation and flotation of pyrite and sphalerite. Coll Surf B 36: 91-99.

    CrossRef  CAS  Google Scholar 

  • Patra P, Natarajan KA. 2006. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cell and metabolic products of Bacillus polymyxa, J Colloid Interface Sci 298: 720-729.

    PubMed  CrossRef  CAS  Google Scholar 

  • Poortinga AT, Bos R, Norde W, Busscher HJ. 2002. Electrical double layer interactions in bacterial adhesion to surfaces. Surf Sci Reports 47: 1-32.

    CrossRef  CAS  Google Scholar 

  • Raichur AM, Misra M, Smith RW. 1995. Differential adhesion of hydrophobic bacteria onto coal and associated minerals. Coal Prep 16: 51-63.

    CAS  CrossRef  Google Scholar 

  • Raichur AM, Misra M, Bukka K, Smith RW. 1996. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei. Coll Surf B 8: 13-24.

    CrossRef  CAS  Google Scholar 

  • Raichur AM, Vijayalakshmi SP. 2003. The effect of nature of raw coal on the adhesion of bacteria to coal surface. Fuel 82: 225-231.

    CrossRef  CAS  Google Scholar 

  • Rijnaarts HM, Norde W, Lyklema J, Zehnder A. 1995. The isoelectric point of bacteria as an indicator fort he presence of cell surface polymers that inhibit adhesion. Coll Surf B 4: 191-197.

    CrossRef  CAS  Google Scholar 

  • Roberts JL. 1947. Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci 63: 135-140.

    CrossRef  CAS  Google Scholar 

  • Sadowski Z, Golab Z. 1991. Biomodification of mineral surface properties by Aspergillus niger. In: Smith RW, Misra M, eds. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania, 81-90.

    Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA. 2000. Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation. Miner Eng 13: 747-763.

    CrossRef  CAS  Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA, Hanumantha Rao K, Forssberg KSE. 2001a. Biomodulation of galena and sphalerite surfaces using Thiobacillus thiooxidans. Int J Miner Process 62: 121-141.

    CrossRef  CAS  Google Scholar 

  • Santhiya D. 2001b. Investigations in to the surface chemistry of galena, sphalerite and sulfur minerals using Thiobacillus thiooxidans and Bacillus polymyxa. Doctoral thesis, Indian Institute of Science, Bangalore, India.

    Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA. 2001c. Surface chemical studies on sphalerite and galena using Bacillus polymyxa. Part I: Microbially induced mineral separation. J Colloid Interface Sci 235: 289-297.

    CrossRef  CAS  Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA. 2001d. Surface chemical studies on sphalerite and galena using Bacillus polymyxa. Part II: Mechanisms of microbe-mineral interaction. J Colloid Interface Sci 235: 298-309.

    CrossRef  CAS  Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA. 2001e. Role of microorganisms in surface chemical changes on sphalerite and galena. In: Ciminelli VST, Garcia Jr. O. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part B, 13-22.

    Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA. 2002. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. J Colloid Interface Sci 256: 237-248.

    PubMed  CrossRef  CAS  Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA, Indi SS. 2003. Surface chemical studies on galena and sphalerite using mineral-adapted Bacillus polymyxa. In: Lorenzen L, Bradshaw DJ, eds. Proceedings of the XXII Int Miner Process Congr, The South African Institute of Mining and Metallurgy, South Africa, Vol. 2, 902-911.

    Google Scholar 

  • Santhiya D, Subramanian S, Natarajan KA. 2005. Effect of bacterial proteins and polysaccharides on the selective separation of sphalerite from galena. In: Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25–29, Cape Town, South Africa. Produced by Compress www.compress.co.za, 325-333.

    Google Scholar 

  • Schneider IAH, Misra M, Smith RW. 1994. Bioflocculation of fine suspensions by Candida parapsilosis and its sonication products. In: Mulukutla PS, ed. Reagents for Better Metallurgy, TMS, Warrendale, 197-208.

    Google Scholar 

  • Sharma PK, Das A, Hanumantha Rao K, Forssberg KSE. 1999. Thiobacillus ferrooxidans interaction with sulfide minerals and selective chalcopyrite flotation from pyrite. In: Parekh BK, Miller JD, eds. Advances in Flotation Technology, SME/AIME, 147-165.

    Google Scholar 

  • Sharma PK, Hanumantha Rao K. 1999. Role of a heterotrophic Paenibacillus polymyxa bacteria in the bioflotation of some sulfide minerals. Miner Metal Process 16: 35-41.

    CAS  Google Scholar 

  • Sharma PK, Hanumantha Rao K, Natarajan KA, Forssberg KSE. 2000. Bioflotation of sulfide minerals in the presence of heterotrophic and chemolithotrophic bacteria. In: Massacci P, ed. Proceedings of the XXI Int Miner Process Cong, Developments in Mineral Processing, Elsevier, Vol. B, B8a 93-103.

    Google Scholar 

  • Sharma PK, Hanumantha Rao K, Forssberg KSE, Natarajan KA. 2001a. Surface chemical characterization of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int J Miner Process 62: 3-25.

    CrossRef  CAS  Google Scholar 

  • Sharma PK, Das A, Hanumantha Rao K, Natarajan KA, Forssberg KSE. 2001b. Surface characterisation of Thiobacillus ferrooxidans cells grown under different conditions. In: Ciminelli VST, Garcia Jr. O. Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Elsevier Science BV, Amsterdam, Part B, 589-98.

    Google Scholar 

  • Sharma PK, Hanumantha Rao K, Forssberg KSE. 2002. Analysis of bacterial cells surface free energy by contact angle measurements. In: Subramanian S, Natarajan KA, Rao BS, Rao TRR, eds. Proceedings of the Int Seminar Miner Process Tech, Navbharath Enterprises Publishers, Bangalore, 426-434.

    Google Scholar 

  • Sharma PK, Hanumantha Rao K. 2002. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv Colloid Interface Sci 98: 341-463.

    PubMed  CrossRef  CAS  Google Scholar 

  • Sharma PK, Hanumantha Rao K. 2003. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Coll Surf B, 29: 21-38.

    CrossRef  CAS  Google Scholar 

  • Sharma PK, Das A, Hanumantha Rao K., Forssberg KSE. 2003. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy 71: 285-292.

    CrossRef  CAS  Google Scholar 

  • Smith RW, Misra M. 1991a. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania.

    Google Scholar 

  • Smith RW, Misra M. 1991b. Mineral Bioprocessing-An overview. In: Smith RW, Misra M, eds. Mineral Bioprocessing, The Minerals, Metals and Materials Society, Pennsylvania, 3-26.

    Google Scholar 

  • Smith RW, Misra M, Dubel J. 1991. Mineral bioprocessing and the future. Miner Eng 4: 1127-1141.

    CrossRef  Google Scholar 

  • Smith RW, Misra M, Chen S. 1993. Adsorption of a hydrophobic bacterium onto hematite: Implications in the froth flotation of hematite. J Soc Ind Microbiol 11: 63-67.

    CrossRef  CAS  Google Scholar 

  • Smith RW, Chen S, Misra M. 1994. Hydrophobic bacteria as flocculating agents for mineral suspensions. In: Moudgil BM, Somasundaran P, eds. Dispersion and aggregation: Fundamentals and applications, Engineering Foundation, New York, 499-506.

    Google Scholar 

  • Smith RW, Miettinen M. 2006. Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Miner Eng 19: 548-553.

    CrossRef  CAS  Google Scholar 

  • Solojenken PM, Lyubavina LL, Larin VK, Bergelson LD, Dyatlovitskaya EV,. 1976. A new collector in non-sulfide ore flotation. Bulletin Nonferrous Metall 16: 21-31.

    Google Scholar 

  • Solojenken PM. 1979. Floatability and leaching of low grade ores with reagents of biological origin. In: Proceedings of the Int Conf Advances in Chemical Metallurgy, BARC, Bombay, India, 37/1-37/13.

    Google Scholar 

  • Subramanian S, Santhiya D, Natarajan KA. 2003. Surface modification studies on sulfide minerals using bioreagents. Int J Miner Process 72: 175-188.

    CrossRef  CAS  Google Scholar 

  • Townsley CC, Atkins AS, Davis AJ. 1987. Suppression of pyrite sulfur during flotation by Thiobacillus ferrooxidans. Biotech Bioeng 30: 1-8.

    CrossRef  CAS  Google Scholar 

  • Unz RF. 1987. Aspects of bioflocculation. In: Attia YA, ed. Flocculation in Biotechnology and Separation Systems, Elsevier, Amsterdam, 351-368.

    Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB. 1987a. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53: 1893-1897.

    Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB. 1987b. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53: 1898-1901.

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovely DR. 1998. Microbiological evidence of Fe (III) reduction on early Earth. Nature 395: 65-68.

    PubMed  CrossRef  ADS  CAS  Google Scholar 

  • Vasan SS, Modak JM, Natarajan KA. 2001. Some recent advances in the bioprocessing of bauxite. Int J Miner Process 62: 173-186.

    CrossRef  CAS  Google Scholar 

  • Vijayalakshmi SP, Raichur AM. 2002. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int J Miner Process 67: 199-210.

    CrossRef  CAS  Google Scholar 

  • Vijayalakshmi SP, Raichur AM. 2003. The utility of Bacillus subtilis as a bioflocculant for fine coal. Coll Surf B 29: 265-275.

    CrossRef  CAS  Google Scholar 

  • Vogt V, Gock E, Sand W. 2003. Sulfide ore flotation with extracellular polymeric substances (EPS) as biological depressant reagents. In: Lorenzen L, Bradshaw DJ, eds. Proceedings of the XXII Int Miner Process Congr, The South African Institute of Mining and Metallurgy, South Africa, Vol 2, 997-1006.

    Google Scholar 

  • Yelloji Rao MK, Natarajan KA, Somasundaran P. 1992a. Effect of bacterial conditioning of sphalerite and galena with Thiobacillus ferrooxidans on their floatability. In: Smith RW, Misra M, eds. Minerals Bioprocessing, TMS, Warrendale, 105-120.

    Google Scholar 

  • Yelloji Rao MK, Natarajan KA, Somasundaran P. 1992b. Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena. Miner Metall Process 9: 95-100.

    Google Scholar 

  • Yelloji Rao MK, Somasundaran P. 1995. Biomodification of mineral surfaces and flotation. In: Matis KA, ed. Flotation Science and Engineering, Marcel Dekker Inc, New York, 455-472.

    Google Scholar 

  • Yelloji Rao MK, Natarajan KA, Somasundaran P. 1997. Growth and attachment of Thiobacillus ferro-oxidans during sulfide mineral leaching. Int J Miner Process 50: 103-210.

    Google Scholar 

  • Yuce AE, Mustafa Tarkan H, Zeki Dogan M. 2006. Effect of bacterial conditioning and the flotation of copper ore and concentrate. African J Biotechnol 5: 448-452.

    CAS  Google Scholar 

  • Zheng X, Smith RW. 1997. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner Eng 10: 537-545.

    CrossRef  CAS  Google Scholar 

  • Zheng X, Smith RW, Mehta RK, Misra M, Raichur AM. 1998. Anionic flotation of apatite from dolomite modified by the presence of bacteria. Miner Metall Process 15: 52-56.

    CAS  Google Scholar 

  • Zheng X, Arps PJ, Smith RW. 2001. Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. Int J Miner Process 62: 159-172.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rao, K.H., Subramanian, S. (2007). Bioflotation And Bioflocculation Of Relevance To Minerals Bioprocessing. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_14

Download citation