Skip to main content

Immunology of infections with Cryptococcus neoformans

  • Chapter
  • 1030 Accesses

Abstract

Cryptococcus neoformans is largely an opportunist, causing infection when host defences are breached. During the past two decades, invasive cryptococcal infections have emerged as a major threat to these immunocompromised hosts, especially to non-treated HIV patients. Also patients with neoplastic diseases are at significant risk for infections as a result of their underlying illness and its therapy. The outcome of infections differs, depending upon which aspect of immunity is impaired. This article reviews the current understanding of the role and relative importance of innate and adaptive immunity to Cryptococcus neoformans. An understanding of the host response to this organism is important in decisions regarding use of currently available anti-fungal strategies and in the design of new therapeutic modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre, K., Havell, E.A., Gibson, G.W. and Johnson, L.L. (1995) Role of tumor necrosis factor and gamma interferon in acquired resistance to Cryptococcus neoformans in the central nervous system of mice. Infect. Immun. 63, 1725–1731.

    PubMed  CAS  Google Scholar 

  • Aguirre, K. and Miller, S. (2002) MHC class II-positive perivascular microglial cells mediate resistance to Cryptococcus neoformans brain infection. Glia 39, 184–188.

    PubMed  Google Scholar 

  • Allen, M.J., Laederach, A., Reilly, P.J. and Mason, R.J. (2001) Polysaccharide recognition by surfactant protein D: novel interactions of a C-type lectin with nonterminal glucosyl residues. Biochemistry 40, 7789–7798.

    PubMed  CAS  Google Scholar 

  • Almeida, G.M., Andrade, R.M. and Bento, C.A. (2001) The capsular polysaccharides of Cryptococcus neoformans activate normal CD4(+) T cells in a dominant Th2 pattern. J. Immunol. 167, 5845–5851.

    PubMed  CAS  Google Scholar 

  • Antachopoulos, C. and Roilides, E. (2005) Cytokines and fungal infections. Br. J. Haematol. 129, 583–596.

    PubMed  CAS  Google Scholar 

  • Arora, S., Hernandez, Y., Erb-Downward, J.R., McDonald, R.A., Toews, G.B. and Huffnagle, G.B. (2005) Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J. Immunol. 174, 6346–6356.

    PubMed  CAS  Google Scholar 

  • Attal, H.C., Grover, S., Bansal, M.P., Chaubey, B.S. and Joglekar, V.K. (1983) Capsule deficient cryptococcus neoformans an unusual clinical presentation. J. Assoc. Physicians India 31, 49–51.

    PubMed  CAS  Google Scholar 

  • Baker, R.D. and Haugen, R.K. (1955) Tissue changes and tissue diagnosis in cryptococcosis. Am. J. Med. 25, 14–24.

    CAS  Google Scholar 

  • Bauman, S.K., Nichols, K.L. and Murphy, J.W. (2000) Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J. Immunol. 165, 158–167.

    PubMed  CAS  Google Scholar 

  • Beenhouwer, D.O., Shapiro, S., Feldmesser, M., Casadevall, A. and Scharff, M.D. (2001) Both Th1 and Th2 cytokines affect the ability of monoclonal antibodies to protect mice against Cryptococcus neoformans. Infect. Immun. 69, 6445–6455.

    PubMed  CAS  Google Scholar 

  • Biondo, C., Midiri, A., Messina, L., Tomasello, F., Garufi, G., Catania, M.R., Bombaci, M., Beninati, C., Teti, G. and Mancuso, G. (2005) MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur. J. Immunol. 35, 870–878.

    PubMed  CAS  Google Scholar 

  • Blackstock, R., McCormack, J.M. and Hall, N.K. (1987) Induction of a macrophage-suppressive lymphokine by soluble cryptococcal antigens and its association with models of immunologic tolerance. Infect. Immun. 55, 233–239.

    PubMed  CAS  Google Scholar 

  • Blasi, E., Barluzzi, R., Mazzolla, R., Mosci, P. and Bistoni, F. (1992) Experimental model of intracerebral infection with Cryptococcus neoformans: roles of phagocytes and opsonization. Infect. Immun. 60, 3682–3688.

    PubMed  CAS  Google Scholar 

  • Breen, J.F., Lee, I.C., Vogel, F.R. and Friedman, H. (1982) Cryptococcal capsular polysaccharide-induced modulation of murine immune responses. Infect. Immun. 36, 47–51.

    PubMed  CAS  Google Scholar 

  • Buchanan, K.L. and Murphy, J.W. (1994) Regulation of cytokine production during the expression phase of the anticryptococcal delayed-type hypersensitivity response. Infect. Immun. 62, 2930–2939.

    PubMed  CAS  Google Scholar 

  • Buchanan, K.L. and Murphy, J.W. (1998) What makes Cryptococcus neoformans a pathogen? Emerg. Infect. Dis. 4, 71–83.

    CAS  Google Scholar 

  • Bufler, P., Schmidt, B., Schikor, D., Bauernfeind, A., Crouch, E.C. and Griese, M. (2003) Surfactant protein A and D differently regulate the immune response to nonmucoid Pseudomonas aeruginosa and its lipopolysaccharide. Am. J. Respir. Cell Mol. Biol. 28, 249–256.

    PubMed  CAS  Google Scholar 

  • Bulmer, G.S. and Tacker, J.R. (1975) Phagocytosis of Cryptococcus neoformans by alveolar macrophages. Infect. Immun. 11, 73–79.

    PubMed  CAS  Google Scholar 

  • Casadevall, A., Cleare, W., Feldmesser, M., Glatman-Freedman, A., Goldman, D.L., Kozel, T.R., Lendvai, N., Mukherjee, J., Pirofski, L.A., Rivera, J., Rosas, A.L., Scharff, M.D., Valadon, P., Westin, K. and Zhong, Z. (1998) Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob. Agents Chemother. 42, 1437–1446.

    PubMed  CAS  Google Scholar 

  • Casadevall, A., Mukherjee, J., Devi, S.J., Schneerson, R., Robbins, J.B. and Scharff, M.D. (1992) Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J. Infect. Dis. 165, 1086–1093.

    PubMed  CAS  Google Scholar 

  • Casadevall, A. and Perfect, J.R. (1998) Cryptococcus neoformans. (Washington D.C.: ASM press).

    Google Scholar 

  • Casadevall, A. and Pirofski, L.A. (2001) Adjunctive immune therapy for fungal infections. Clin. Infect. Dis. 33, 1048–1056.

    PubMed  CAS  Google Scholar 

  • Chaka, W., Verheul, A.F. and Hoepelman, A.I. (1997a) Influence of different conditions on kinetics of tumor necrosis factor alpha release by peripheral blood mononuclear cells after stimulation with Cryptococcus neoformans: a possible explanation for different results. Clin. Diagn. Lab Immunol. 4, 792–794.

    CAS  Google Scholar 

  • Chaka, W., Verheul, A.F., Vaishnav, V.V., Cherniak, R., Scharringa, J., Verhoef, J., Snippe, H. and Hoepelman, A.I. (1997b) Induction of TNF-alpha in human peripheral blood mononuclear cells by the mannoprotein of Cryptococcus neoformans involves human mannose binding protein. J. Immunol. 159, 2979–2985.

    CAS  Google Scholar 

  • Chaka, W., Verheul, A.F., Vaishnav, V.V., Cherniak, R., Scharringa, J., Verhoef, J., Snippe, H. and Hoepelman, I.M. (1997c) Cryptococcus neoformans and cryptococcal glucuronoxylomannan, galactoxylomannan, and mannoprotein induce different levels of tumor necrosis factor alpha in human peripheral blood mononuclear cells. Infect. Immun. 65, 272–278.

    CAS  Google Scholar 

  • Chang, Y.C. and Kwon-Chung, K.J. (1994) Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol. Cell Biol. 14, 4912–4919.

    PubMed  CAS  Google Scholar 

  • Chang, Y.C. and Kwon-Chung, K.J. (1998) Isolation of the third capsule-associated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect. Immun. 66, 2230–2236.

    PubMed  CAS  Google Scholar 

  • Chang, Y.C. and Kwon-Chung, K.J. (1999) Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J. Bacteriol. 181, 5636–5643.

    PubMed  CAS  Google Scholar 

  • Chang, Y.C., Penoyer, L.A., and Kwon-Chung, K.J. (1996) The second capsule gene of cryptococcus neoformans, CAP64, is essential for virulence. Infect. Immun. 64, 1977–1983.

    PubMed  CAS  Google Scholar 

  • Chen, G.H., McDonald, R.A., Wells, J.C., Huffnagle, G.B., Lukacs, N.W. and Toews, G.B. (2005) The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect. Immun. 73, 1788–1796.

    PubMed  CAS  Google Scholar 

  • Chiapello, L., Iribarren, P., Cervi, L., Rubinstein, H. and Masih, D.T. (2001) Mechanisms for induction of immunosuppression during experimental cryptococcosis: role of glucuronoxylomannan. Clin. Immunol. 100, 96–106.

    PubMed  CAS  Google Scholar 

  • Chikuma, S. and Bluestone, J.A. (2003) CTLA-4 and tolerance: the biochemical point of view. Immunol. Res. 28, 241–253.

    PubMed  CAS  Google Scholar 

  • Coenjaerts, F.E., Walenkamp, A.M., Mwinzi, P.N., Scharringa, J., Dekker, H.A., van Strijp, J.A., Cherniak, R. and Hoepelman, A.I. (2001) Potent inhibition of neutrophil migration by cryptococcal mannoprotein-4-induced desensitization. J. Immunol. 167, 3988–3995.

    PubMed  CAS  Google Scholar 

  • Collins, H.L. and Bancroft, G.J. (1991) Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect. Immun. 59, 3883–3888.

    PubMed  CAS  Google Scholar 

  • Cross, C.E. and Bancroft, G.J. (1995) Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun. 63, 2604–2611.

    PubMed  CAS  Google Scholar 

  • Crouch, E. and Wright, J.R. (2001) Surfactant proteins a and d and pulmonary host defense. Annu. Rev. Physiol. 63, 521–554.

    PubMed  CAS  Google Scholar 

  • de Waal, M.R., Abrams, J., Bennett, B., Figdor, C.G., and de Vries, J.E. (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220.

    Google Scholar 

  • Decken, K., Kohler, G., Palmer-Lehmann, K., Wunderlin, A., Mattner, F., Magram, J., Gately, M.K. and Alber, G. (1998) Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect. Immun. 66, 4994–5000.

    PubMed  CAS  Google Scholar 

  • Delfino, D., Cianci, L., Lupis, E., Celeste, A., Petrelli, M.L., Curro, F., Cusumano, V. and Teti, G. (1997) Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infect. Immun. 65, 2454–2456.

    PubMed  CAS  Google Scholar 

  • Delfino, D., Cianci, L., Migliardo, M., Mancuso, G., Cusumano, V., Corradini, C. and Teti, G. (1996) Tumor necrosis factor-inducing activities of Cryptococcus neoformans components. Infect. Immun. 64, 5199–5204.

    PubMed  CAS  Google Scholar 

  • Devi, S.J., Schneerson, R., Egan, W., Ulrich, T.J., Bryla, D., Robbins, J.B. and Bennett, J.E. (1991) Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect. Immun. 59, 3700–3707.

    PubMed  CAS  Google Scholar 

  • Diamond, R.D. and Bennett, J.E. (1973) Growth of Cryptococcus neoformans within human macrophages in vitro. Infect. Immun. 7, 231–236.

    PubMed  CAS  Google Scholar 

  • Diamond, R.D. and Bennett, J.E. (1974) Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann. Intern. Med. 80, 176–181.

    CAS  Google Scholar 

  • Diamond, R.D., May, J.E., Kane, M.A., Frank, M.M. and Bennett, J.E. (1974) The role of the classical and alternate complement pathways in host defenses against Cryptococcus neoformans infection. J. Immunol. 112, 2260–2270.

    PubMed  CAS  Google Scholar 

  • Dong, Z.M. and Murphy, J.W. (1995a) Effects of the two varieties of Cryptococcus neoformans cells and culture filtrate antigens on neutrophil locomotion. Infect. Immun. 63, 2632–2644.

    CAS  Google Scholar 

  • Dong, Z.M. and Murphy, J.W. (1995b) Intravascular cryptococcal culture filtrate (CneF) and its major component, glucuronoxylomannan, are potent inhibitors of leukocyte accumulation. Infect. Immun. 63, 770–778.

    CAS  Google Scholar 

  • Dong, Z.M. and Murphy, J.W. (1996) Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J. Clin. Invest 97, 689–698.

    PubMed  CAS  Google Scholar 

  • Dong, Z.M. and Murphy, J.W. (1997) Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect. Immun. 65, 557–563.

    PubMed  CAS  Google Scholar 

  • Dromer, F., Charreire, J., Contrepois, A., Carbon, C. and Yeni, P. (1987) Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect. Immun. 55, 749–752.

    PubMed  CAS  Google Scholar 

  • Dromer, F., Mathoulin, S., Dupont, B. and Laporte, A. (1996) Epidemiology of cryptococcosis in France: a 9-year survey (1985–1993). French Cryptococcosis Study Group. Clin. Infect. Dis. 23, 82–90.

    CAS  Google Scholar 

  • Dromer, F., Yeni, P. and Charreire, J. (1988) Genetic control of the humoral response to cryptococcal capsular polysaccharide in mice. Immunogenetics 28, 417–424.

    PubMed  CAS  Google Scholar 

  • Duncan, R.A., von Reyn, C.F., Alliegro, G.M., Toossi, Z., Sugar, A.M. and Levitz, S.M. (1993) Idiopathic CD4+ T-lymphocytopenia–four patients with opportunistic infections and no evidence of HIV infection. N. Engl. J. Med. 328, 393–398.

    PubMed  CAS  Google Scholar 

  • Ellerbroek, P.M., Hoepelman, A.I., Wolbers, F., Zwaginga, J.J. and Coenjaerts, F.E. (2002) Cryptococcal Glucuronoxylomannan Inhibits Adhesion of Neutrophils to Stimulated Endothelium In Vitro by Affecting Both Neutrophils and Endothelial Cells. Infect. Immun. 70, 4762–4771.

    PubMed  CAS  Google Scholar 

  • Ellerbroek, P.M., Schoemaker, R.G., van Veghel, R., Hoepelman, I.M. and Coenjaerts, F.E. (2004a) Cryptococcal Capsular Glucuronoxylomannan Reduces Ischemia-related Neutrophil Influx. Eur. J. Clin. Invest. 34, 631–40.

    CAS  Google Scholar 

  • Ellerbroek, P.M., Ulfman, L.H., Hoepelman, I.M. and Coenjaerts, F.E.J. (2004b) Cryptococcal glucuronoxylomannan interferes with neutrophil rolling on the endothelium. Cell Microbiol 6, 581–592.

    CAS  Google Scholar 

  • Ellerbroek, P.M., Walenkamp, A.M., Hoepelman, A.I. and Coenjaerts, F.E. (2004c) Effects of the capsular polysaccharides of Cryptococcus neoformans on phagocyte migration and inflammatory mediators. Curr. Med. Chem. 11, 253–266.

    CAS  Google Scholar 

  • Eng, R., Chmel, H., Corrado, M. and Smith, S.M. (1983) The course of cryptococcal capsular polysaccharide antigenemia/human cryptococcal polysaccharide elimination kinetics. Infection 11, 132–136.

    PubMed  CAS  Google Scholar 

  • Eng, R.H., Bishburg, E., Smith, S.M. and Kapila, R. (1986) Cryptococcal infections in patients with acquired immune deficiency syndrome. Am. J. Med. 81, 19–23.

    PubMed  CAS  Google Scholar 

  • Farmer, S.G. and Komorowski, R.A. (1973) Histologic response to capsule-deficient Cryptococcus neoformans. Arch. Pathol. 96, 383–387.

    PubMed  CAS  Google Scholar 

  • Feldmesser, M., Casadevall, A., Kress, Y., Spira, G. and Orlofsky, A. (1997a) Eosinophil-Cryptococcus neoformans interactions in vivo and in vitro. Infect. Immun. 65, 1899–1907.

    CAS  Google Scholar 

  • Feldmesser, M., Kress, Y., Novikoff, P. and Casadevall, A. (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68, 4225–4237.

    PubMed  CAS  Google Scholar 

  • Ferguson, J.S., Voelker, D.R., McCormack, F.X. and Schlesinger, L.S. (1999) Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163, 312–321.

    PubMed  CAS  Google Scholar 

  • Fleuridor, R., Lees, A. and Pirofski, L. (2001) A cryptococcal capsular polysaccharide mimotope prolongs the survival of mice with Cryptococcus neoformans infection. J. Immunol. 166, 1087–1096.

    PubMed  CAS  Google Scholar 

  • Franzot, S.P., Salkin, I.F. and Casadevall, A. (1999) Cryptococcus neoformans var. grubii: separate varietal status for Cryptococcus neoformans serotype A isolates. J. Clin. Microbiol 37, 838–840.

    PubMed  CAS  Google Scholar 

  • Fries, B.C., Goldman, D.L., Cherniak, R., Ju, R. and Casadevall, A. (1999) Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect. Immun. 67, 6076–6083.

    PubMed  CAS  Google Scholar 

  • Fries, B.C., Taborda, C.P., Serfass, E. and Casadevall, A. (2001) Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J. Clin. Invest 108, 1639–1648.

    PubMed  CAS  Google Scholar 

  • Fromtling, R.A., Shadomy, H.J. and Jacobson, E.S. (1982) Decreased virulence in stable, acapsular mutants of cryptococcus neoformans. Mycopathologia 79, 23–29.

    PubMed  CAS  Google Scholar 

  • Goldman, D., Lee, S.C. and Casadevall, A. (1994a) Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect. Immun. 62, 4755–4761.

    CAS  Google Scholar 

  • Goldman, D., Song, X., Kitai, R., Casadevall, A., Zhao, M.L. and Lee, S.C. (2001) Cryptococcus neoformans induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta in human microglia: role of specific antibody and soluble capsular polysaccharide. Infect. Immun. 69, 1808–1815.

    PubMed  CAS  Google Scholar 

  • Goldman, D.L., Fries, B.C., Franzot, S.P., Montella, L. and Casadevall, A. (1998) Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc. Natl. Acad. Sci. U.S.A. 95, 14967–14972.

    PubMed  CAS  Google Scholar 

  • Goldman, D.L., Lee, S.C. and Casadevall, A. (1995) Tissue localization of Cryptococcus neoformans glucuronoxylomannan in the presence and absence of specific antibody. Infect. Immun. 63, 3448–3453.

    PubMed  CAS  Google Scholar 

  • Goldman, D.L., Lee, S.C., Mednick, A.J., Montella, L. and Casadevall, A. (2000) Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect. Immun. 68, 832–838.

    PubMed  CAS  Google Scholar 

  • Gordon, M.A. and Casadevall, A. (1995) Serum therapy for Cryptococcal meningitis. Clin. Infect. Dis. 21, 1477–1479.

    PubMed  CAS  Google Scholar 

  • Granger, D.L., Perfect, J.R. and Durack, D.T. (1986) Macrophage-mediated fungistasis in vitro: requirements for intracellular and extracellular cytotoxicity. J. Immunol. 136, 672–680.

    PubMed  CAS  Google Scholar 

  • Graybill, J.R. and Mitchell, L. (1979) Host defense in Cryptococcosis. III. In vivo alteration of immunity. Mycopathologia 69, 171–178.

    PubMed  CAS  Google Scholar 

  • Graybill, J.R., Mitchell, L. and Drutz, D.J. (1979) Host defense in cryptococcosis. III. Protection of nude mice by thymus transplantation. J. Infect. Dis. 140, 546–552.

    PubMed  CAS  Google Scholar 

  • Griffin, F.M., Jr. (1981) Roles of macrophage Fc and C3b receptors in phagocytosis of immunologically coated Cryptococcus neoformans. Proc. Natl. Acad. Sci. U.S.A. 78, 3853–3857.

    PubMed  CAS  Google Scholar 

  • Gutierrez, F., Fu, Y.S. and Lurie, H. (1975) Cryptococcosis histologically resembling histoplasmosis. A light and electron microscopical study. Arch. Pathol. 99, 347–352.

    PubMed  CAS  Google Scholar 

  • Hajjeh, R.A., Conn, L.A., Stephens, D.S., Baughman, W., Hamill, R., Graviss, E., Pappas, P.G., Thomas, C., Reingold, A., Rothrock, G., Hutwagner, L.C., Schuchat, A., Brandt, M.E. and Pinner, R.W. (1999) Cryptococcosis: population-based multistate active surveillance and risk factors in human immunodeficiency virus-infected persons. Cryptococcal Active Surveillance Group. J. Infect. Dis. 179, 449–454.

    PubMed  CAS  Google Scholar 

  • Harrison, T.S., Nong, S. and Levitz, S.M. (1997) Induction of human immunodeficiency virus type 1 expression in monocytic cells by Cryptococcus neoformans and Candida albicans. J. Infect. Dis. 176, 485–491.

    PubMed  CAS  Google Scholar 

  • Henderson, D.K., Bennett, J.E. and Huber, M.A. (1982) Long-lasting, specific immunologic unresponsiveness associated with cryptococcal meningitis. J. Clin. Invest 69, 1185–1190.

    PubMed  CAS  Google Scholar 

  • Henderson, D.K., Kan, V.L. and Bennett, J.E. (1986) Tolerance to cryptococcal polysaccharide in cured cryptococcosis patients: failure of antibody secretion in vitro. Clin. Exp. Immunol. 65, 639–646.

    PubMed  CAS  Google Scholar 

  • Hernandez, Y., Herring, A.C. and Huffnagle, G.B. (2004) Pulmonary defenses against fungi. Semin. Respir. Crit Care Med. 25, 63–71.

    PubMed  Google Scholar 

  • Herring, A.C., Lee, J., McDonald, R.A., Toews, G.B. and Huffnagle, G.B. (2002) Induction of interleukin-12 and gamma interferon requires tumor necrosis factor alpha for protective T1-cell-mediated immunity to pulmonary Cryptococcus neoformans infection. Infect. Immun. 70, 2959–2964.

    PubMed  CAS  Google Scholar 

  • Hill, J.O. and Aguirre, K.M. (1994) CD4+ T cell-dependent acquired state of immunity that protects the brain against Cryptococcus neoformans. J. Immunol. 152, 2344–2350.

    PubMed  CAS  Google Scholar 

  • Hoag, K.A., Lipscomb, M.F., Izzo, A.A. and Street, N.E. (1997) IL-12 and IFN-gamma are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant C.B-17 mice. Am. J. Respir. Cell Mol. Biol. 17, 733–739.

    PubMed  CAS  Google Scholar 

  • Huang, C. and Levitz, S.M. (2000) Stimulation of macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, and RANTES by Candida albicans and Cryptococcus neoformans in peripheral blood mononuclear cells from persons with and without human immunodeficiency virus infection. J. Infect. Dis. 181, 791–794.

    PubMed  CAS  Google Scholar 

  • Huang, C., Nong, S.H., Mansour, M.K., Specht, C.A. and Levitz, S.M. (2002) Purification and Characterization of a Second Immunoreactive Mannoprotein from Cryptococcus neoformans That Stimulates T-Cell Responses. Infect. Immun. 70, 5485–5493.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B. (1996) Role of cytokines in T cell immunity to a pulmonary Cryptococcus neoformans infection. Biol. Signals 5, 215–222.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B. and Lipscomb, M.F. (1998) Cells and cytokines in pulmonary cryptococcosis. Res. Immunol. 149, 387–396.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., Lipscomb, M.F., Lovchik, J.A., Hoag, K.A. and Street, N.E. (1994) The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukoc. Biol. 55, 35–42.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B. and McNeil, L.K. (1999) Dissemination of C. neoformans to the central nervous system: role of chemokines, Th1 immunity and leukocyte recruitment. J. Neurovirol. 5, 76–81.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., McNeil, L.K., McDonald, R.A., Murphy, J.W., Toews, G.B., Maeda, N. and Kuziel, W.A. (1999) Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J. Immunol. 163, 4642–4646.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., Strieter, R.M., Standiford, T.J., McDonald, R.A., Burdick, M.D., Kunkel, S.L. and Toews, G.B. (1995) The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J. Immunol. 155, 4790–4797.

    PubMed  CAS  Google Scholar 

  • Huffnagle, G.B., Toews, G.B., Burdick, M.D., Boyd, M.B., McAllister, K.S., McDonald, R.A., Kunkel, S.L. and Strieter, R.M. (1996) Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J. Immunol. 157, 4529–4536.

    PubMed  CAS  Google Scholar 

  • Ibrahim, A.S., Filler, S.G., Alcouloumre, M.S., Kozel, T.R., Edwards, J.E., Jr., and Ghannoum, M.A. (1995) Adherence to and damage of endothelial cells by Cryptococcus neoformans in vitro: role of the capsule. Infect. Immun. 63, 4368–4374.

    PubMed  CAS  Google Scholar 

  • Ikeda, R., Shinoda, T., Kagaya, K. and Fukazawa, Y. (1984) Role of serum factors in the phagocytosis of weakly or heavily encapsulated Cryptococcus neoformans strains by guinea pig peripheral blood leukocytes. Microbiol. Immunol. 28, 51–61.

    PubMed  CAS  Google Scholar 

  • Imwidthaya, P. and Poungvarin, N. (2000) Cryptococcosis in AIDS. Postgrad. Med. J. 76, 85–88.

    PubMed  CAS  Google Scholar 

  • James, P.G., Cherniak, R., Jones, R.G., Stortz, C.A. and Reiss, E. (1990) Cell-wall glucans of Cryptococcus neoformans Cap 67. Carbohydr. Res. 198, 23–38.

    PubMed  CAS  Google Scholar 

  • Kagaya, K., Yamada, T., Miyakawa, Y., Fukazawa, Y. and Saito, S. (1985) Characterization of pathogenic constituents of Cryptococcus neoformans strains. Microbiol. Immunol. 29, 517–532.

    PubMed  CAS  Google Scholar 

  • Karaoui, R.M., Hall, N.K. and Larsh, H.W. (1977) Role of macrophages in immunity and pathogenesis of experimental cryptococcosis induced by the airborne route–Part II: Phagocytosis and intracellular fate of Cryptococcus neoformans. Mykosen 20, 409–412.

    PubMed  CAS  Google Scholar 

  • Kawakami, K., Kinjo, Y., Uezu, K., Yara, S., Miyagi, K., Koguchi, Y., Nakayama, T., Taniguchi, M. and Saito, A. (2001) Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167, 6525–6532.

    PubMed  CAS  Google Scholar 

  • Kawakami, K., Shibuya, K., Qureshi, M.H., Zhang, T., Koguchi, Y., Tohyama, M., Xie, Q., Naoe, S. and Saito, A. (1999) Chemokine responses and accumulation of inflammatory cells in the lungs of mice infected with highly virulent Cryptococcus neoformans: effects of interleukin-12. FEMS Immunol. Med. Microbiol. 25, 391–402.

    PubMed  CAS  Google Scholar 

  • Keller, R.G., Pfrommer, G.S. and Kozel, T.R. (1994) Occurrences, specificities, and functions of ubiquitous antibodies in human serum that are reactive with the Cryptococcus neoformans cell wall. Infect. Immun. 62, 215–220.

    PubMed  CAS  Google Scholar 

  • Khakpour, F.R. and Murphy, J.W. (1987) Characterization of a third-order suppressor T cell (Ts3) induced by cryptococcal antigen(s). Infect. Immun. 55, 1657–1662.

    PubMed  CAS  Google Scholar 

  • Kilgore, K.S., Imlay, M.M., Szaflarski, J.P., Silverstein, F.S., Malani, A.N., Evans, V.M. and Warren, J.S. (1997) Neutrophils and reactive oxygen intermediates mediate glucan-induced pulmonary granuloma formation through the local induction of monocyte chemoattractant protein-1. Lab Invest 76, 191–201.

    PubMed  CAS  Google Scholar 

  • Koguchi, Y. and Kawakami, K. (2002) Cryptococcal infection and Th1-Th2 cytokine balance. Int. Rev. Immunol. 21, 423–438.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R. and Gotschlich, E.C. (1982) The capsule of cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J. Immunol. 129, 1675–1680.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R., Gulley, W.F. and Cazin, J., Jr. (1977) Immune response to Cryptococcus neoformans soluble polysaccharide: immunological unresponsiveness. Infect. Immun. 18, 701–707.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R. and Hermerath, C.A. (1984) Binding of cryptococcal polysaccharide to Cryptococcus neoformans. Infect. Immun. 43, 879–886.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R. and Mastroianni, R.P. (1976) Inhibition of phagocytosis by cryptococcal polysaccharide: dissociation of the attachment and ingestion phases of phagocytosis. Infect. Immun. 14, 62–67.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R., Pfrommer, G.S., Guerlain, A.S., Highison, B.A. and Highison, G.J. (1988) Role of the capsule in phagocytosis of Cryptococcus neoformans. Rev. Infect. Dis. 10 (Suppl 2), S436–S439.

    PubMed  Google Scholar 

  • Kozel, T.R., Tabuni, A., Young, B.J. and Levitz, S.M. (1996) Influence of opsonization conditions on C3 deposition and phagocyte binding of large- and small-capsule Cryptococcus neoformans cells. Infect. Immun. 64, 2336–2338.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R., Wilson, M.A. and Murphy, J.W. (1991) Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect. Immun. 59, 3101–3110.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R., Wilson, M.A., Pfrommer, G.S. and Schlageter, A.M. (1989) Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect. Immun. 57, 1922–1927.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R., Wilson, M.A. and Welch, W.H. (1992) Kinetic analysis of the amplification phase for activation and binding of C3 to encapsulated and nonencapsulated Cryptococcus neoformans. Infect. Immun. 60, 3122–3127.

    PubMed  CAS  Google Scholar 

  • Kwon-Chung, K.J. and Rhodes, J.C. (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect. Immun. 51, 218–223.

    PubMed  CAS  Google Scholar 

  • Lawson, P.R. and Reid, K.B. (2000) The roles of surfactant proteins A and D in innate immunity. Immunol. Rev. 173, 66–78.

    PubMed  CAS  Google Scholar 

  • Laxalt, K.A. and Kozel, T.R. (1979) Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans. Infect. Immun. 26, 435–440.

    PubMed  CAS  Google Scholar 

  • Lee, S.C., Dickson, D.W., Brosnan, C.F. and Casadevall, A. (1994) Human astrocytes inhibit Cryptococcus neoformans growth by a nitric oxide-mediated mechanism. J. Exp. Med. 180, 365–369.

    PubMed  CAS  Google Scholar 

  • Lee, S.C., Kress, Y., Zhao, M.L., Dickson, D.W. and Casadevall, A. (1995) Cryptococcus neoformans survive and replicate in human microglia. Lab Invest 73, 871–879.

    PubMed  CAS  Google Scholar 

  • Lendvai, N., Casadevall, A., Liang, Z., Goldman, D.L., Mukherjee, J. and Zuckier, L. (1998) Effect of immune mechanisms on the pharmacokinetics and organ distribution of cryptococcal polysaccharide. J. Infect. Dis. 177, 1647–1659.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M. (1991) The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev. Infect. Dis. 13, 1163–1169.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M. and Dupont, M.P. (1993) Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J. Clin. Invest 91, 1490–1498.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., Dupont, M.P. and Smail, E.H. (1994a) Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect. Immun. 62, 194–202.

    CAS  Google Scholar 

  • Levitz, S.M. and Farrell, T.P. (1990) Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect. Immun. 58, 1201–1209.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., Nong, S., Mansour, M.K., Huang, C. and Specht, C.A. (2001) Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proc. Natl. Acad. Sci. U.S.A. 98, 10422–10427.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M. and North, E.A. (1997) Lymphoproliferation and cytokine profiles in human peripheral blood mononuclear cells stimulated by Cryptococcus neoformans. J. Med. Vet. Mycol. 35, 229–236.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., North, E.A., Dupont, M.P. and Harrison, T.S. (1995) Mechanisms of inhibition of Cryptococcus neoformans by human lymphocytes. Infect. Immun. 63, 3550–3554.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M. and Tabuni, A. (1991) Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J. Clin. Invest 87, 528–535.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., Tabuni, A., Kornfeld, H., Reardon, C.C. and Golenbock, D.T. (1994b) Production of tumor necrosis factor alpha in human leukocytes stimulated by Cryptococcus neoformans. Infect. Immun. 62, 1975–1981.

    CAS  Google Scholar 

  • Levitz, S.M., Tabuni, A., Kozel, T.R., MacGill, R.S., Ingalls, R.R. and Golenbock, D.T. (1997) Binding of Cryptococcus neoformans to heterologously expressed human complement receptors. Infect. Immun. 65, 931–935.

    PubMed  CAS  Google Scholar 

  • Levitz, S.M., Tabuni, A., Nong, S.H. and Golenbock, D.T. (1996) Effects of interleukin-10 on human peripheral blood mononuclear cell responses to Cryptococcus neoformans, Candida albicans, and lipopolysaccharide. Infect. Immun. 64, 945–951.

    PubMed  CAS  Google Scholar 

  • Lindell, D.M., Moore, T.A., McDonald, R.A., Toews, G.B. and Huffnagle, G.B. (2005) Generation of antifungal effector CD8+ T cells in the absence of CD4+ T cells during Cryptococcus neoformans infection. J. Immunol. 174, 7920–7928.

    PubMed  CAS  Google Scholar 

  • Lipovsky, M.M., Gekker, G., Anderson, W.R., Molitor, T.W., Peterson, P.K. and Hoepelman, A.I. (1997) Phagocytosis of nonopsonized Cryptococcus neoformans by swine microglia involves CD14 receptors. Clin. Immunol. Immunopathol. 84, 208–211.

    PubMed  CAS  Google Scholar 

  • Lipovsky, M.M., Gekker, G., Hu, S., Ehrlich, L.C., Hoepelman, A.I. and Peterson, P.K. (1998a) Cryptococcal glucuronoxylomannan induces interleukin (IL)-8 production by human microglia but inhibits neutrophil migration toward IL-8. J. Infect. Dis. 177, 260–263.

    CAS  Google Scholar 

  • Lipovsky, M.M., Tsenova, L., Coenjaerts, F.E., Kaplan, G., Cherniak, R. and Hoepelman, A.I. (2000) Cryptococcal glucuronoxylomannan delays translocation of leukocytes across the blood-brain barrier in an animal model of acute bacterial meningitis. J. Neuroimmunol. 111, 10–14.

    PubMed  CAS  Google Scholar 

  • Lipovsky, M.M., van Elden, L.J., Walenkamp, A.M., Dankert, J. and Hoepelman, A.I. (1998b) Does the capsule component of the Cryptococcus neoformans glucuronoxylomannan impair transendothelial migration of leukocytes in patients with cryptococcal meningitis? J. Infect. Dis. 178, 1231–1232.

    CAS  Google Scholar 

  • Ma, L.L., Spurrell, J.C., Wang, J.F., Neely, G.G., Epelman, S., Krensky, A.M. and Mody, C.H. (2002) CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J. Immunol. 169, 5787–5795.

    PubMed  CAS  Google Scholar 

  • Madan, T., Eggleton, P., Kishore, U., Strong, P., Aggrawal, S.S., Sarma, P.U. and Reid, K.B. (1997) Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect. Immun. 65, 3171–3179.

    PubMed  CAS  Google Scholar 

  • Mansour, M.K., Schlesinger, L.S. and Levitz, S.M. (2002) Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 168, 2872–2879.

    PubMed  CAS  Google Scholar 

  • Mansour, M.K., Yauch, L.E., Rottman, J.B. and Levitz, S.M. (2004) Protective efficacy of antigenic fractions in mouse models of cryptococcosis. Infect. Immun. 72, 1746–1754.

    PubMed  CAS  Google Scholar 

  • Mason, R.J., Greene, K. and Voelker, D.R. (1998) Surfactant protein A and surfactant protein D in health and disease. Am. J. Physiol 275, L1–13.

    PubMed  CAS  Google Scholar 

  • McCormack, F.X. and Whitsett, J.A. (2002) The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Invest. 109, 707–712.

    PubMed  CAS  Google Scholar 

  • McGaw, T.G. and Kozel, T.R. (1979) Opsonization of Cryptococcus neoformans by human immunoglobulin G: masking of immunoglobulin G by cryptococcal polysaccharide. Infect. Immun. 25, 262–267.

    PubMed  CAS  Google Scholar 

  • Metta, H.A., Corti, M.E., Negroni, R., Helou, S., Arechavala, A., Soto, I., Villafane, M.F., Muzzio, E., Castello, T., Esquivel, P. and Trione, N. (2002) [Disseminated cryptococcosis in patients with AIDS. Clinical, microbiological, and immunological analysis of 51 patients]

    Google Scholar 

  • Criptococosis diseminada en pacientes con SIDA. Analisis clinico, microbiologico e inmunologico de 51 pacientes. Rev. Argent Microbiol. 34, 117–123.

    Google Scholar 

  • Miller, M.F. and Mitchell, T.G. (1991) Killing of Cryptococcus neoformans strains by human neutrophils and monocytes. Infect. Immun. 59, 24–28.

    PubMed  CAS  Google Scholar 

  • Mirshafiey, A., Chitsaz, M., Attar, M., Mehrabian, F. and Razavi, A.R. (2000a) Culture filtrate of Cryptococcus neoformans var. gattii (CneF) as a novel anti-inflammatory compound in the treatment of experimental septic arthritis. Scand. J. Immunol. 52, 278–284.

    CAS  Google Scholar 

  • Mirshafiey, A., Mehrabian, F., Razavi, A., Shidfar, M.R. and Namaki, S. (2000b) Novel therapeutic approach by culture filtrate of Cryptococcus neoformans var. gattii (CneF) in experimental immune complex glomerulonephritis. Gen. Pharmacol. 34, 311–319.

    CAS  Google Scholar 

  • Mirshafiey, A., Razavi, A., Mehrabian, F., Moghaddam, M.R. and Hadjavi, M. (2002) Treatment of experimental nephrosis by culture filtrate of Cryptococcus neoformans var. gattii (CneF). Immunopharmacol. Immunotoxicol 24, 349–364.

    CAS  Google Scholar 

  • Mitchell, D.H., Sorrell, T.C., Allworth, A.M., Heath, C.H., McGregor, A.R., Papanaoum, K., Richards, M.J. and Gottlieb, T. (1995) Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin. Infect. Dis. 20, 611–616.

    PubMed  CAS  Google Scholar 

  • Mitchell, T.G. and Perfect, J.R. (1995) Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol Rev. 8, 515–548.

    PubMed  CAS  Google Scholar 

  • Mody, C.H., Chen, G.H., Jackson, C., Curtis, J.L. and Toews, G.B. (1993) Depletion of murine CD8+ T cells in vivo decreases pulmonary clearance of a moderately virulent strain of Cryptococcus neoformans. J. Lab Clin. Med. 121, 765–773.

    PubMed  CAS  Google Scholar 

  • Mody, C.H., Chen, G.H., Jackson, C., Curtis, J.L. and Toews, G.B. (1994a) In vivo depletion of murine CD8 positive T cells impairs survival during infection with a highly virulent strain of Cryptococcus neoformans. Mycopathologia 125, 7–17.

    CAS  Google Scholar 

  • Mody, C.H., Lipscomb, M.F., Street, N.E. and Toews, G.B. (1990) Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J. Immunol. 144, 1472–1477.

    PubMed  CAS  Google Scholar 

  • Mody, C.H., Paine, R., III, Jackson, C., Chen, G.H. and Toews, G.B. (1994b) CD8 cells play a critical role in delayed type hypersensitivity to intact Cryptococcus neoformans. J. Immunol. 152, 3970–3979.

    CAS  Google Scholar 

  • Mody, C.H. and Syme, R.M. (1993) Effect of polysaccharide capsule and methods of preparation on human lymphocyte proliferation in response to Cryptococcus neoformans. Infect. Immun. 61, 464–469.

    PubMed  CAS  Google Scholar 

  • Monari, C., Kozel, T.R., Bistoni, F. and Vecchiarelli, A. (2002) Modulation of C5aR Expression on Human Neutrophils by Encapsulated and Acapsular Cryptococcus neoformans. Infect. Immun. 70, 3363–3370.

    PubMed  CAS  Google Scholar 

  • Monari, C., Pericolini, E., Bistoni, G., Casadevall, A., Kozel, T.R. and Vecchiarelli, A. (2005) Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. J. Immunol. 174, 3461–3468.

    PubMed  CAS  Google Scholar 

  • Monari, C., Retini, C., Casadevall, A., Netski, D., Bistoni, F., Kozel, T.R. and Vecchiarelli, A. (2003) Differences in outcome of the interaction between Cryptococcus neoformans glucuronoxylomannan and human monocytes and neutrophils. Eur. J. Immunol. 33, 1041–1051.

    PubMed  CAS  Google Scholar 

  • Monga, D.P. (1981) Role of macrophages in resistance of mice to experimental cryptococcosis. Infect. Immun. 32, 975–978.

    PubMed  CAS  Google Scholar 

  • Mosmann, T.R. and Coffman, R.L. (1989) Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 46, 111–147.

    PubMed  CAS  Google Scholar 

  • Mosmann, T.R. and Sad, S. (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146.

    PubMed  CAS  Google Scholar 

  • Mozaffarian, N., Casadevall, A. and Berman, J.W. (2000) Inhibition of human endothelial cell chemokine production by the opportunistic fungal pathogen Cryptococcus neoformans. J. Immunol. 165, 1541–1547.

    PubMed  CAS  Google Scholar 

  • Mukherjee, J., Casadevall, A. and Scharff, M.D. (1993a) Molecular characterization of the humoral responses to Cryptococcus neoformans infection and glucuronoxylomannan-tetanus toxoid conjugate immunization. J. Exp. Med. 177, 1105–1116.

    CAS  Google Scholar 

  • Mukherjee, J., Feldmesser, M., Scharff, M.D. and Casadevall, A. (1995a) Monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan enhance fluconazole efficacy. Antimicrob. Agents Chemother. 39, 1398–1405.

    CAS  Google Scholar 

  • Mukherjee, J., Pirofski, L.A., Scharff, M.D. and Casadevall, A. (1993b) Antibody-mediated protection in mice with lethal intracerebral Cryptococcus neoformans infection. Proc. Natl. Acad. Sci. U.S.A. 90, 3636–3640.

    CAS  Google Scholar 

  • Mukherjee, J., Scharff, M.D. and Casadevall, A. (1994a) Cryptococcus neoformans infection can elicit protective antibodies in mice. Can. J. Microbiol. 40, 888–892.

    CAS  Google Scholar 

  • Mukherjee, S., Lee, S., Mukherjee, J., Scharff, M.D. and Casadevall, A. (1994b) Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. Infect. Immun. 62, 1079–1088.

    CAS  Google Scholar 

  • Mukherjee, S., Lee, S.C. and Casadevall, A. (1995b) Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect. Immun. 63, 573–579.

    CAS  Google Scholar 

  • Murphy, J.W. (1989) Clearance of Cryptococcus neoformans from immunologically suppressed mice. Infect. Immun. 57, 1946–1952.

    CAS  Google Scholar 

  • Murphy, J.W. (1993) Natural killer cells and Cryptococcus neoformans. Adv. Exp. Med. Biol 335, 269–275.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W. (1998) Protective cell-mediated immunity against Cryptococcus neoformans. Res. Immunol. 149, 373–386.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W. (1999) Immunological down-regulation of host defenses in fungal infections. Mycoses 42 (Suppl 2), 37–43.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W. and Cozad, G.C. (1972) Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect. Immun. 5, 896–901.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W., Hidore, M.R. and Wong, S.C. (1993) Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J. Clin. Invest 91, 1553–1566.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W. and Moorhead, J.W. (1982) Regulation of cell-mediated immunity in cryptococcosis. I. Induction of specific afferent T suppressor cells by cryptococcal antigen. J. Immunol. 128, 276–283.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W. and Mosley, R.L. (1985) Regulation of cell-mediated immunity in cryptococcosis. III. Characterization of second-order T suppressor cells (Ts2). J. Immunol. 134, 577–584.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W., Mosley, R.L., Cherniak, R., Reyes, G.H., Kozel, T.R. and Reiss, E. (1988) Serological, electrophoretic, and biological properties of Cryptococcus neoformans antigens. Infect. Immun. 56, 424–431.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W., Mosley, R.L. and Moorhead, J.W. (1983) Regulation of cell-mediated immunity in cryptococcosis. II. Characterization of first-order T suppressor cells (Ts1) and induction of second-order suppressor cells. J. Immunol. 130, 2876–2881.

    PubMed  CAS  Google Scholar 

  • Murphy, J.W., Schafer, F., Casadevall, A. and Adesina, A. (1998) Antigen-induced protective and nonprotective cell-mediated immune components against Cryptococcus neoformans. Infect. Immun. 66, 2632–2639.

    PubMed  CAS  Google Scholar 

  • Muth, S.M. and Murphy, J.W. (1995a) Direct anticryptococcal activity of lymphocytes from Cryptococcus neoformans-immunized mice. Infect. Immun. 63, 1637–1644.

    CAS  Google Scholar 

  • Muth, S.M. and Murphy, J.W. (1995b) Effects of immunization with Cryptococcus neoformans cells or cryptococcal culture filtrate antigen on direct anticryptococcal activities of murine T lymphocytes. Infect. Immun. 63, 1645–1651.

    CAS  Google Scholar 

  • Mwaba, P., Mwansa, J., Chintu, C., Pobee, J., Scarborough, M., Portsmouth, S. and Zumla, A. (2001) Clinical presentation, natural history, and cumulative death rates of 230 adults with primary cryptococcal meningitis in Zambian AIDS patients treated under local conditions. Postgrad. Med. J. 77, 769–773.

    PubMed  CAS  Google Scholar 

  • Noverr, M.C., Phare, S.M., Toews, G.B., Coffey, M.J. and Huffnagle, G.B. (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect. Immun. 69, 2957–2963.

    PubMed  CAS  Google Scholar 

  • O’Sullivan,B. and Thomas, R. (2003) CD40 and dendritic cell function. Crit Rev. Immunol. 23, 83–107.

    PubMed  CAS  Google Scholar 

  • Ofek, I., Mesika, A., Kalina, M., Keisari, Y., Podschun, R., Sahly, H., Chang, D., McGregor, D. and Crouch, E. (2001) Surfactant protein D enhances phagocytosis and killing of unencapsulated phase variants of Klebsiella pneumoniae. Infect. Immun. 69, 24–33.

    PubMed  CAS  Google Scholar 

  • Olszewski, M.A., Huffnagle, G.B., Traynor, T.R., McDonald, R.A., Cook, D.N. and Toews, G.B. (2001) Regulatory effects of macrophage inflammatory protein 1alpha/CCL3 on the development of immunity to Cryptococcus neoformans depend on expression of early inflammatory cytokines. Infect. Immun. 69, 6256–6263.

    PubMed  CAS  Google Scholar 

  • Orendi, J.M., Nottet, H.S., Visser, M.R., Verheul, A.F., Snippe, H. and Verhoef, J. (1994) Enhancement of HIV-1 replication in peripheral blood mononuclear cells by Cryptococcus neoformans is monocyte-dependent but tumour necrosis factor-independent. AIDS 8, 423–429.

    PubMed  CAS  Google Scholar 

  • Orendi, J.M., Verheul, A.F., De Vos, N.M., Visser, M.R., Snippe, H., Cherniak, R., Vaishnav, V.V., Rijkers, G.T. and Verhoef, J. (1997) Mannoproteins of Cryptococcus neoformans induce proliferative response in human peripheral blood mononuclear cells (PBMC) and enhance HIV-1 replication. Clin. Exp. Immunol. 107, 293–299.

    PubMed  CAS  Google Scholar 

  • Perfect, J.R., Lang, S.D. and Durack, D.T. (1980) Chronic cryptococcal meningitis: a new experimental model in rabbits. Am. J. Pathol. 101, 177–194.

    PubMed  CAS  Google Scholar 

  • Pettoello-Mantovani, M., Casadevall, A., Kollmann, T.R., Rubinstein, A. and Goldstein, H. (1992) Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet 339, 21–23.

    PubMed  CAS  Google Scholar 

  • Pettoello-Mantovani, M., Casadevall, A., Smarnworawong, P. and Goldstein, H. (1994) Enhancement of HIV type 1 infectivity in vitro by capsular polysaccharide of Cryptococcus neoformans and Haemophilus influenzae. AIDS Res. Hum. Retroviruses 10, 1079–1087.

    PubMed  CAS  Google Scholar 

  • Pietrella, D., Cherniak, R., Strappini, C., Perito, S., Mosci, P., Bistoni, F. and Vecchiarelli, A. (2001a) Role of mannoprotein in induction and regulation of immunity to Cryptococcus neoformans. Infect. Immun. 69, 2808–2814.

    CAS  Google Scholar 

  • Pietrella, D., Corbucci, C., Perito, S., Bistoni, G. and Vecchiarelli, A. (2005) Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73, 820–827.

    PubMed  CAS  Google Scholar 

  • Pietrella, D., Lupo, P., Perito, S., Mosci, P., Bistoni, F. and Vecchiarelli, A. (2004) Disruption of CD40/CD40L interaction influences the course of Cryptococcus neoformans infection. FEMS Immunol. Med. Microbiol. 40, 63–70.

    PubMed  CAS  Google Scholar 

  • Pietrella, D., Mazzolla, R., Lupo, P., Pitzurra, L., Gomez, M.J., Cherniak, R. and Vecchiarelli, A. (2002) Mannoprotein from Cryptococcus neoformans promotes T-helper type 1 anticandidal responses in mice. Infect. Immun. 70, 6621–6627.

    PubMed  CAS  Google Scholar 

  • Pietrella, D., Perito, S., Bistoni, F. and Vecchiarelli, A. (2001b) Cytotoxic T lymphocyte antigen costimulation influences T-cell activation in response to Cryptococcus neoformans. Infect. Immun. 69, 1508–1514.

    CAS  Google Scholar 

  • Pitzurra, L., Cherniak, R., Giammarioli, M., Perito, S., Bistoni, F. and Vecchiarelli, A. (2000) Early induction of interleukin-12 by human monocytes exposed to Cryptococcus neoformans mannoproteins. Infect. Immun. 68, 558–563.

    PubMed  CAS  Google Scholar 

  • Pitzurra, L., Vecchiarelli, A., Peducci, R., Cardinali, A. and Bistoni, F. (1997) Identification of a 105 kilodalton Cryptococcus neoformans mannoprotein involved in human cell-mediated immune response. J. Med. Vet. Mycol. 35, 299–303.

    PubMed  CAS  Google Scholar 

  • Reiss, E., Cherniak, R., Eby, R. and Kaufman, L. (1984) Enzyme immunoassay detection of IgM to galactoxylomannan of Cryptococcus neoformans. Diagn. Immunol. 2, 109–115.

    PubMed  CAS  Google Scholar 

  • Retini, C., Casadevall, A., Pietrella, D., Monari, C., Palazzetti, B. and Vecchiarelli, A. (1999) Specific activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans. J. Immunol. 162, 1618–1623.

    PubMed  CAS  Google Scholar 

  • Retini, C., Kozel, T.R., Pietrella, D., Monari, C., Bistoni, F. and Vecchiarelli, A. (2001) Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect. Immun. 69, 6064–6073.

    PubMed  CAS  Google Scholar 

  • Retini, C., Vecchiarelli, A., Monari, C., Bistoni, F. and Kozel, T.R. (1998) Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect. Immun. 66, 664–669.

    PubMed  CAS  Google Scholar 

  • Retini, C., Vecchiarelli, A., Monari, C., Tascini, C., Bistoni, F. and Kozel, T.R. (1996) Capsular polysaccharide of Cryptococcus neoformans induces proinflammatory cytokine release by human neutrophils. Infect. Immun. 64, 2897–2903.

    PubMed  CAS  Google Scholar 

  • Rippon, J.W. (1988) Cryptococcosis. In Medical Mycology, the pathogenic fungi and the pathogenic actinomyces, J.W.Rippon, ed. (Philadelphia: W.B. Saunders Co.), pp. 595–599.

    Google Scholar 

  • Rivera, J., Zaragoza, O. and Casadevall, A. (2005) Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infect. Immun. 73, 1141–1150.

    PubMed  CAS  Google Scholar 

  • Roseff, S.A. and Levitz, S.M. (1993) Effect of endothelial cells on phagocyte-mediated anticryptococcal activity. Infect. Immun. 61, 3818–3824.

    PubMed  CAS  Google Scholar 

  • Saag, M.S., Graybill, R.J., Larsen, R.A., Pappas, P.G., Perfect, J.R., Powderly, W.G., Sobel, J.D. and Dismukes, W.E. (2000) Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin. Infect. Dis. 30, 710–718.

    CAS  Google Scholar 

  • Schwartz, D.A. (1988) Characterization of the biological activity of Cryptococcus infections in surgical pathology. The Budding Index and Carminophilic Index. Ann. Clin. Lab Sci. 18, 388–397.

    CAS  Google Scholar 

  • Shapiro, S., Beenhouwer, D.O., Feldmesser, M., Taborda, C., Carroll, M.C., Casadevall, A. and Scharff, M.D. (2002) Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protect mice deficient in complement component C3. Infect. Immun. 70, 2598–2604.

    PubMed  CAS  Google Scholar 

  • Shimizu, R.Y., Howard, D.H. and Clancy, M.N. (1986) The variety of Cryptococcus neoformans in patients with AIDS. J. Infect. Dis. 154, 1042.

    PubMed  CAS  Google Scholar 

  • Shoham, S., Huang, C., Chen, J.M., Golenbock, D.T. and Levitz, S.M. (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166, 4620–4626.

    PubMed  CAS  Google Scholar 

  • Shoham, S. and Levitz, S.M. (2005) The immune response to fungal infections. Br. J. Haematol. 129, 569–582.

    PubMed  Google Scholar 

  • Speed, B. and Dunt, D. (1995) Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin. Infect. Dis. 21, 28–34.

    PubMed  CAS  Google Scholar 

  • Sundstrom, J.B. and Cherniak, R. (1993) T-cell-dependent and T-cell-independent mechanisms of tolerance to glucuronoxylomannan of Cryptococcus neoformans serotype A. Infect. Immun. 61, 1340–1345.

    PubMed  CAS  Google Scholar 

  • Syme, R.M., Bruno, T.F., Kozel, T.R. and Mody, C.H. (1999) The capsule of Cryptococcus neoformans reduces T-lymphocyte proliferation by reducing phagocytosis, which can be restored with anticapsular antibody. Infect. Immun. 67, 4620–4627.

    PubMed  CAS  Google Scholar 

  • Syme, R.M., Spurrell, J.C., Amankwah, E.K., Green, F.H. and Mody, C.H. (2002) Primary Dendritic Cells Phagocytose Cryptococcus neoformans via Mannose Receptors and Fcgamma Receptor II for Presentation to T Lymphocytes. Infect. Immun. 70, 5972–5981.

    PubMed  CAS  Google Scholar 

  • Syme, R.M., Wood, C.J., Wong, H. and Mody, C.H. (1997) Both CD4+ and CD8+ human lymphocytes are activated and proliferate in response to Cryptococcus neoformans. Immunology 92, 194–200.

    PubMed  CAS  Google Scholar 

  • Taborda, C.P. and Casadevall, A. (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16, 791–802.

    PubMed  CAS  Google Scholar 

  • Tissi, L., Puliti, M., Bistoni, F., Mosci, P., Kozel, T.R. and Vecchiarelli, A. (2004) Glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, inhibits the progression of group B streptococcal arthritis. Infect. Immun. 72, 6367–6372.

    PubMed  CAS  Google Scholar 

  • Traynor, T.R., Kuziel, W.A., Toews, G.B. and Huffnagle, G.B. (2000) CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164, 2021–2027.

    PubMed  CAS  Google Scholar 

  • Trilles, L., Lazera, M., Wanke, B., Theelen, B. and Boekhout, T. (2003) Genetic characterization of environmental isolates of the Cryptococcus neoformans species complex from Brazil. Med. Mycol. 41, 383–390.

    PubMed  CAS  Google Scholar 

  • van de Moer, A., Salhi, S.L., Cherniak, R., Pau, B., Garrigues, M.L. and Bastide, J.M. (1990) An anti-Cryptococcus neoformans monoclonal antibody directed against galactoxylomannan. Res. Immunol. 141, 33–42.

    PubMed  Google Scholar 

  • van Rozendaal, B.A., van Spriel, A.B., van De Winkel, J.G. and Haagsman, H.P. (2000) Role of pulmonary surfactant protein D in innate defense against Candida albicans. J. Infect. Dis. 182, 917–922.

    PubMed  Google Scholar 

  • Vecchiarelli, A. (2000a) Cytokines and costimulatory molecules: positive and negative regulation of the immune response to Cryptococcus neoformans. Arch. Immunol. Ther. Exp. (Warsz.) 48, 465–472.

    CAS  Google Scholar 

  • Vecchiarelli, A. (2000b) Immunoregulation by capsular components of Cryptococcus neoformans. Med. Mycol. 38, 407–417.

    CAS  Google Scholar 

  • Vecchiarelli, A., Pietrella, D., Dottorini, M., Monari, C., Retini, C., Todisco, T. and Bistoni, F. (1994) Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin. Exp. Immunol. 98, 217–223.

    PubMed  CAS  Google Scholar 

  • Vecchiarelli, A., Pietrella, D., Lupo, P., Bistoni, F., McFadden, D.C. and Casadevall, A. (2003) The polysaccharide capsule of Cryptococcus neoformans interferes with human dendritic cell maturation and activation. J. Leukoc. Biol. 74, 370–378.

    PubMed  CAS  Google Scholar 

  • Vecchiarelli, A., Retini, C., Casadevall, A., Monari, C., Pietrella, D. and Kozel, T.R. (1998a) Involvement of C3a and C5a in interleukin-8 secretion by human polymorphonuclear cells in response to capsular material of Cryptococcus neoformans. Infect. Immun. 66, 4324–4330.

    CAS  Google Scholar 

  • Vecchiarelli, A., Retini, C., Monari, C. and Casadevall, A. (1998b) Specific antibody to Cryptococcus neoformans alters human leukocyte cytokine synthesis and promotes T-cell proliferation. Infect. Immun. 66, 1244–1247.

    CAS  Google Scholar 

  • Vecchiarelli, A., Retini, C., Monari, C., Tascini, C., Bistoni, F. and Kozel, T.R. (1996) Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect. Immun. 64, 2846–2849.

    PubMed  CAS  Google Scholar 

  • Vecchiarelli, A., Retini, C., Pietrella, D., Monari, C., Tascini, C., Beccari, T. and Kozel, T.R. (1995) Downregulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin-1 beta secretion from human monocytes. Infect. Immun. 63, 2919–2923.

    PubMed  CAS  Google Scholar 

  • Walenkamp, A.M., Chaka, W.S., Verheul, A.F., Vaishnav, V.V., Cherniak, R., Coenjaerts, F.E. and Hoepelman, I.M. (1999) Cryptococcus neoformans and its cell wall components induce similar cytokine profiles in human peripheral blood mononuclear cells despite differences in structure. FEMS Immunol. Med. Microbiol 26, 309–318.

    PubMed  CAS  Google Scholar 

  • Wilder, J.A., Olson, G.K., Chang, Y.C., Kwon-Chung, K.J. and Lipscomb, M.F. (2002) Complementation of a capsule deficient Cryptococcus neoformans with CAP64 restores virulence in a murine lung infection. Am. J. Respir. Cell Mol. Biol. 26, 306–314.

    PubMed  CAS  Google Scholar 

  • Wilson, M.A. and Kozel, T.R. (1992) Contribution of antibody in normal human serum to early deposition of C3 onto encapsulated and nonencapsulated Cryptococcus neoformans. Infect. Immun. 60, 754–761.

    PubMed  CAS  Google Scholar 

  • Yauch, L.E., Mansour, M.K., Shoham, S., Rottman, J.B. and Levitz, S.M. (2004) Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun. 72, 5373–5382.

    PubMed  CAS  Google Scholar 

  • Yuan, R.R., Casadevall, A., Oh, J. and Scharff, M.D. (1997) T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc. Natl. Acad. Sci. U.S.A. 94, 2483–2488.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ellerbroek, P., Vecchiarelli, A., Hoepelman, A., Coenjaerts, F. (2007). Immunology of infections with Cryptococcus neoformans. In: Brown, G.D., Netea, M.G. (eds) Immunology of Fungal Infections. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5492-0_17

Download citation

Publish with us

Policies and ethics