Skip to main content

Chromatin Acetylation Status in the Manifestation of Neurodegenerative Diseases

HDAC inhibitors as therapeutic tools

  • Chapter
Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

During the development and maintenance of the central nervous system, neurons receive specific instructions to differentiate, survive or die, the correct choice being crucial for the maturation of a functional brain and to face pathological conditions. At the transcriptional level, chromatin remodeling enzymes participates in such processes. In this paper, we will see that disruption of the Histone acetyl transferase (HAT)/Deacetylase (HDAC) balance is often observed in different contexts of neurological disorders and more particularly during neuronal apoptosis. During the last 5 years, it has been evidenced that the chromatin acetylation status was greatly impaired in different neurodegenerative diseases, a common mechanism being the loss of function of a specific HAT: the CREB-binding protein (CBP). We will review the last attempts of the use of small molecules antagonizing HDAC activity (HDAC inhibitors) to restore proper levels of acetylation and enhance neuronal survival, both in in vitro and in vivo models of neurodegenerative diseases such as polyglutamine-related diseases and amyotrophic lateral sclerosis. Although this strategy lacks specificity towards CBP, certain of these molecules display promising therapeutic properties

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42(6): 947-959

    PubMed  CAS  Google Scholar 

  • Alnernri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICEICED-3 protease nomenclature. Cell 87(2):171

    Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305(5686): 1010-1013

    PubMed  CAS  Google Scholar 

  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278(21): 19134-19140

    PubMed  CAS  Google Scholar 

  • Barlow AL, van Drunen CM, Johnson CA, Tweedie S, Bird A, Turner BM (2001) dSIR2 and dHDAC6: two novel, inhibitor-resistant deacetylases in Drosophila melanogaster. Exp Cell Res 265(1): 90-103

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Hayden MR (2004) Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun 322(4): 1310-1317

    PubMed  CAS  Google Scholar 

  • Bolger TA, Yao TP (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 25(41): 9544-9553

    PubMed  CAS  Google Scholar 

  • Borner C, Monney L (1999) Apoptosis without caspases: an inefficient molecular guillotine? Cell Death Differ 6(6): 497-507

    PubMed  CAS  Google Scholar 

  • Boutell JM, Thomas P, Neal JW, Weston VJ, Duce J, Harper PS, Jones AL (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum Mol Genet 8(9): 1647-1655

    PubMed  CAS  Google Scholar 

  • Boutillier AL, Trinh E, Loeffler JP (2003) Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis. J Neurochem 84(4): 814-828

    PubMed  CAS  Google Scholar 

  • Buck SW, Gallo CM, Smith JS (2004) Diversity in the Sir2 family of protein deacetylases. J Leukoc Biol 75(6): 939-950

    PubMed  CAS  Google Scholar 

  • Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM (2000) Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 350(Pt 1): 199-205

    PubMed  CAS  Google Scholar 

  • Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14(1): 105-113

    PubMed  CAS  Google Scholar 

  • Chai Y, Wu L, Griffin JD, Paulson HL (2001) The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 276(48): 44889-44897

    PubMed  CAS  Google Scholar 

  • Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85(1): 15l-159

    Google Scholar 

  • Cong SY, Pepers BA, Evert BO, Rubinsztein DC, Roos RA, van Ommen GJ, Dorsman JC (2005) Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol Cell Neurosci 30(4): 560-571

    PubMed  CAS  Google Scholar 

  • Cookson MR, Shaw PJ (1999) Oxidative stress and motor neurone disease. Brain Pathol 9(1): 165-186

    PubMed  CAS  Google Scholar 

  • Corcoran LJ, Mitchison TJ, Liu Q (2004) A novel action of histone deacetylase inhibitors in a protein aggresome disease model. Curr Biol 14(6):488-492

    PubMed  CAS  Google Scholar 

  • Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38(2): 157-160

    PubMed  CAS  Google Scholar 

  • Cui SS, Yang CP, Bowen RC, Bai O, Li XM, Jiang W, Zhang X (2003) Valproic acid enhances axonal regeneration and recovery of motor function after sciatic nerve axotomy in adult rats. Brain Res 975(1-2): 229-236

    PubMed  CAS  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7 Suppl): 2485S-2493S

    PubMed  CAS  Google Scholar 

  • Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278(30): 27586-27592

    PubMed  CAS  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3): 737-749

    PubMed  Google Scholar 

  • Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D (2002) Spl and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 296(5576): 2238-2243

    PubMed  CAS  Google Scholar 

  • Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A 101(30): 11159-11164

    PubMed  CAS  Google Scholar 

  • Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6): 479-517

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23(28):9418-9427

    PubMed  CAS  Google Scholar 

  • Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T (2000) Brain-derived neurotrophic factor in Huntington disease. Brain Res 866(1-2): 257-261

    PubMed  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749): 188-193

    PubMed  CAS  Google Scholar 

  • Fischer DD, Cai R, Bhatia U, Asselberg FA, Song C, Terry R, Trogani N, Widmer R, Atadja P, Cohen D (2002) Isolation and charaterization of a novel class II histone deacetylase, HDAC 10. J Biol Chem 277(8):6656-6666

    PubMed  CAS  Google Scholar 

  • Fischer LR, Culver DG, Davis AA, Tennant P, Wang M, Coleman M, Asress S, Adalbert R, Alexander GM, Glass JD (2005) The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol Dis 19(1-2): 293-300

    PubMed  CAS  Google Scholar 

  • Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDAlp. J Biol Chem 274(17): 11713-11720

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425(6957): 475-479

    PubMed  CAS  Google Scholar 

  • Freeland K, Boxer LM, Latchman DS (2001) The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 92(1-2): 98-106

    PubMed  CAS  Google Scholar 

  • Friedlander RM, Brown RH, Gagliardini V, Wang J, Yuan J (1997) Inhibition of ICE slows ALS in mice. Nature 388(6637): 31

    PubMed  CAS  Google Scholar 

  • Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A 98(1): 87-92

    PubMed  CAS  Google Scholar 

  • Galasinski SC, Resing KA, Goodrich JA, Ahn NG (2002) Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 277(22): 19618-19626

    PubMed  CAS  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11s, a novel member of the human histone deacetylase family. J Biol Chem 277(28): 25748-25755

    PubMed  CAS  Google Scholar 

  • Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, Beal MF (2005) Neuroprotective effects of phenylbutyrate in the N171-824 transgenic mouse model of Huntington’s disease. J Biol Chem 280(1): 556-563

    PubMed  CAS  Google Scholar 

  • Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118(1): 127-138

    PubMed  CAS  Google Scholar 

  • Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, Hackam AS, Tam J, Vaillancourt JP, Houtzager V, Rasper DM, Roy S, Hayden MR, Nicholson DW (2002) Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4(2): 95-105

    PubMed  CAS  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of nonhistone proteins. Gene 363: 15-23

    PubMed  CAS  Google Scholar 

  • Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP, Hayden MR (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13(4): 442-449

    PubMed  CAS  Google Scholar 

  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J 20(24): 6969-6978

    PubMed  CAS  Google Scholar 

  • Gray SG, Ekstrom TJ (2001) The human histone deacetylase family. Exp Cell Res 262(2): 75-83

    PubMed  CAS  Google Scholar 

  • Greene LA, Biswas SC, Liu DX (2004) Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death Differ 11(1): 49-60

    PubMed  CAS  Google Scholar 

  • Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, Millican CE, Oppenheim RW (2006) Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALB. J Neurosc. 26(34):8774-8786

    CAS  Google Scholar 

  • Grozinger CM, Schreiber SL (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A 97(14): 7835-7840

    PubMed  CAS  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci U S A 96(9): 4868-4873

    PubMed  CAS  Google Scholar 

  • Guardiola AR, Yao TP (2002) Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277(5): 3350-3356

    PubMed  CAS  Google Scholar 

  • Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14(9): 1021-1026

    PubMed  CAS  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264(5166): 1772-1775

    PubMed  CAS  Google Scholar 

  • Heiser V, Engemann S, Brocker W, Dunkel I, Boeddrich A, Waelter S, Nordhoff E, Lurz R, Schugardt N, Rautenberg S, Herhaus C, Barnickel G, Bottcher H, Lehrach H, Wanker EE (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci U S A 99(Suppl 4): 16400-16406

    PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805): 770-776

    PubMed  CAS  Google Scholar 

  • Herrup K, Neve R, Ackerrnan SL, Copani, A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42): 9232-9239

    PubMed  CAS  Google Scholar 

  • Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 100(4):2041-2046

    PubMed  CAS  Google Scholar 

  • Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Neri C (2001) The Gln-Ala repeat transcriptional activator CAI50 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci U S A 98(4): 1811-1816

    PubMed  CAS  Google Scholar 

  • Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R, Winkler J (2000) Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 275(20): 15254-15264

    PubMed  CAS  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887): 455-458

    PubMed  CAS  Google Scholar 

  • Igarashi S, Morita H, Bennett KM, Tanaka Y, Engelender S, Peters MF, Cooper JK, Wood JD, Sawa A, Ross CA (2003) Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. Neuroreport 14(4): 565-568

    PubMed  CAS  Google Scholar 

  • Inoue H, Tsukita K, Iwasato T, Suzuki Y, Tomioka M, Tateno M, Nagao M, Kawata A, Saido TC, Miura M, Misawa H, Itohara S, Takahashi R (2003) The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. Embo J 22(24): 6665-6674

    PubMed  CAS  Google Scholar 

  • Jiang H, Nucifora FC, Jr., Ross CA, DeFranco DB (2003) Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum Mol Genet 12(1): 1-12

    PubMed  Google Scholar 

  • Jiang YM, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, Takeuchi H, Ishigaki S, Katsuno M, Adachi H, Niwa J, Tanaka F, Doyu M, Yoshida M, Hashizume Y, Sobue G (2005) Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol 57(2): 236-251

    PubMed  CAS  Google Scholar 

  • Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4): 287-299

    PubMed  CAS  Google Scholar 

  • Kalkhoven E (2004) CBP and p300: HATS for different occasions. Biochem Pharmacol 68(6): 1145-1155

    PubMed  CAS  Google Scholar 

  • Kalkhoven E, Roelfsema JH, Teunissen H, den Boer A, Ariyurek Y, Zantema A, Breuning MH, Hennekam RC, Peters DJ (2003) Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12(4): 441-450

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Eckner R, Yao TP, Taira K, Chiu R, Livingston DM, Yokoyama KK (1998) Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature 393(6682): 284-289

    PubMed  CAS  Google Scholar 

  • Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci U S A 96(20): 11404-11409

    PubMed  CAS  Google Scholar 

  • Kazantsev A, Walker HA, Slepko N, Bear JE, Preisinger E, Steffan JS, Zhu YZ, Gertler FB, Housman DE, Marsh JL, Thompson LM (2002) A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nut Genet 30(4): 367-376

    CAS  Google Scholar 

  • Knoepfler PS, Eisenman RN (1999) Sin meets NuRD and other tails of repression. Cell 99(5): 447-450

    PubMed  CAS  Google Scholar 

  • Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S (1997) Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277(5325): 559-562

    PubMed  CAS  Google Scholar 

  • Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. Embo J 22(13): 3411-3420

    PubMed  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28(12): 670-676

    PubMed  CAS  Google Scholar 

  • Kruman II, Pedersen WA, Springer JE, Mattson MP (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160(1): 28-39

    PubMed  CAS  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330): 77-79

    PubMed  Google Scholar 

  • Langley B, Ratan RR (2004) Oxidative stress-induced death in the nervous system: cell cycle dependent or independent? J Neurosci Res 77(5): 621-629

    PubMed  CAS  Google Scholar 

  • Langley B, Gensert JM, Beal MF, Ratan RR (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4(1): 41-50

    PubMed  CAS  Google Scholar 

  • Lee H, Rezai-Zadeh N, Seto E (2004) Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol 24(2): 765-773

    PubMed  CAS  Google Scholar 

  • Lehrmann H, Pritchard LL, Harel-Bellan A (2002) Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 86: 41-65

    PubMed  CAS  Google Scholar 

  • Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A kanscriptional activity. J Biol Chem 275(20): 15594-15599

    PubMed  CAS  Google Scholar 

  • Li F, Macfarlan T, Pittman RN, Chakravarti D (2002) Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities, J Biol Chem 277(47): 45004-45012

    PubMed  CAS  Google Scholar 

  • Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288(5464): 335-339

    PubMed  CAS  Google Scholar 

  • Liu DX, Greene LA (2001) Regulation of neuronal survival and death by E2F-dependent gene repression and derepression. Neuron 32(3): 425-438

    PubMed  CAS  Google Scholar 

  • Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 97(8): 4070-4075

    PubMed  CAS  Google Scholar 

  • Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of CAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Chem 278(18): 15727-15734

    PubMed  CAS  Google Scholar 

  • Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS, Frey AS, Spektor BS, Penney EB, Schilling G, Ross CA, Borchelt DR, Tapscott SJ, Young AB, Cha JH, Olson JM (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9(9): 1259-1271

    PubMed  CAS  Google Scholar 

  • Marks PA, Richon VM, Breslow R, Rifkind RA (2001) Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13(6): 477-483

    PubMed  CAS  Google Scholar 

  • Marmorstein R (2001) Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9(12): 1127-1133

    PubMed  CAS  Google Scholar 

  • Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58(5): 459-471

    PubMed  CAS  Google Scholar 

  • Massa V, Cabrera RM, Menegola E, Giavini E, Finnell RH (2005) Valproic acidinduced skeletal malformations: associated gene expression cascades. Pharmacogenet Genomics 15(11):787-800

    PubMed  CAS  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2): 120-129

    CAS  Google Scholar 

  • McCampbell A, Fischbeck KH (2001) Polyglutamine and CBP: fatal attraction? Nat Med 7(5): 528-530

    PubMed  CAS  Google Scholar 

  • McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G, Fischbeck KH (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9(14): 2197-2202

    PubMed  CAS  Google Scholar 

  • McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci U S A 98(26): 15179-15184

    PubMed  CAS  Google Scholar 

  • Mejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L (2005) Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8(3): 313-321

    PubMed  CAS  Google Scholar 

  • Miller RW, Rubinstein JH (1995) Tumors in Rubinstein-Taybi syndrome. Am J Med Genet 56(1): 112-115

    PubMed  CAS  Google Scholar 

  • Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46(24): 5097-5116

    PubMed  CAS  Google Scholar 

  • Minamiyama M, Katsuno M, Adachi H, Waza M, Sang C, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Sobue G (2004) Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 13(11): 1183-1192

    PubMed  CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Embo J 18(18): 5099-5107

    PubMed  CAS  Google Scholar 

  • Morris SM, Jr (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22: 87-105

    PubMed  CAS  Google Scholar 

  • Morrison BE, Majdzadeh N, Zhang X, Lyles A, Bassel-Duby R, Olson EN, D’Mello, SR (2006) Neuroprotection by histone deacetylase-related protein. Mol Cell Biol 26(9): 3550-3564

    PubMed  CAS  Google Scholar 

  • Murata T, Kurokawa R, Krones A, Tatsurni K, Ishii M, Taki T, Masuno M, Ohashi H, Yanagisawa M, Rosenfeld MG, Glass CK, Hayashi Y (2001) Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Hum Mol Genet 10(10): 1071-1076

    PubMed  CAS  Google Scholar 

  • Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256(1): 12-18

    PubMed  CAS  Google Scholar 

  • Ng HH, Bird A (2000) Histone deacetylases: silencers for hire. Trends Biochem Sci 25(3): 121-126

    PubMed  CAS  Google Scholar 

  • Nguyen MD, Boudreau M, Kriz J, Couillard-Despres S, Kaplan DR, Julien JP (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide disrnutase 1. J Neurosci 23(6): 2131-2140

    PubMed  CAS  Google Scholar 

  • Nogales E (2000) Recent structural insights into transcription preinitiation complexes. J Cell Sci 113 Pt 24: 4391-4397

    Google Scholar 

  • Nucifora FC, Jr., Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291(5512): 2423-2428

    PubMed  CAS  Google Scholar 

  • Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yarnaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999) Mice homozygous for a truncated form of CREBbinding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 93(9): 2771-2779

    PubMed  CAS  Google Scholar 

  • Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, Crow JP, Beal MF (2006) Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 22(1): 40-49

    PubMed  CAS  Google Scholar 

  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ et al (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376(6538): 348-351

    PubMed  CAS  Google Scholar 

  • Phiel C J, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276(39): 36734-36741

    PubMed  Google Scholar 

  • Pollitt SK, Pallos J, Shao J, Desai UA, Ma AA, Thompson LM, Marsh JL, Diamond MI (2003) A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40(4): 685-694

    PubMed  CAS  Google Scholar 

  • Ranganathan S, Bowser, R (2003) Alterations in G(l) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol 162(3): 823-835

    PubMed  CAS  Google Scholar 

  • Remiszewski SW, Sambucetti LC, Atadja P, Bair KW, Cornell WD, Green MA, Howell KL, Jung M, Kwon P, Trogani N, Walker H (2002) Inhibitors of human histone deacetylase: synthesis and enzyme and cellular activity of straight chain hydroxamates. J Med Chem 45(4): 753-757

    PubMed  CAS  Google Scholar 

  • Richfield EK, Maguire-Zeiss KA, Cox C, Gilmore J, Voorn P (1995) Reduced expression of preproenkephalin in striatal neurons from Huntington’s disease patients. Ann Neurol 37(3): 335-343

    PubMed  CAS  Google Scholar 

  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268(5619): 462-464

    PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan, JP, Deng HX et al (1993) Mutations in CuIZn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415): 59-62

    PubMed  CAS  Google Scholar 

  • Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. Embo J 22(24): 6537-6549

    PubMed  CAS  Google Scholar 

  • Rouaux C, Loeffler JP, Boutillier AL (2004) Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol 68(6): 1157-1164

    PubMed  CAS  Google Scholar 

  • Ryu H, Lee J, Zaman K, Kubilis J, Ferrante RJ, Ross BD, Neve R, Ratan RR (2003) Spl and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J Neurosci 23(9): 3597-3606

    PubMed  CAS  Google Scholar 

  • Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, Brown RH, Jr, Ferrante RJ (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93(5): 1087-1098

    PubMed  CAS  Google Scholar 

  • Saha RN, Pahan K (2006) HATS and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13(4): 539-550

    PubMed  CAS  Google Scholar 

  • Salminen A, Tapiola T, Korhonen P, Suuronen T (1998) Neuronal apoptosis induced by histone deacetylase inhibitors. Brain Res Mol Brain Res 61(1-2): 203-206

    PubMed  CAS  Google Scholar 

  • Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22(3): 623-633

    PubMed  CAS  Google Scholar 

  • Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421(6921): 373-379

    PubMed  CAS  Google Scholar 

  • Shimohata T, Onodera O, Tsuji S (2000) Interaction of expanded polyglutamine stretches with nuclear transcription factors leads to aberrant transcriptional regulation in polyglutamine diseases. Neuropathology 20(4): 326-333

    PubMed  CAS  Google Scholar 

  • Sobue G, Hashizume Y, Mukai E, Hirayama M, Mitsuma T, Takahashi A (1989) Xlinked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112(Pt 1): 209-232

    PubMed  Google Scholar 

  • Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97(12): 6763-6768

    PubMed  CAS  Google Scholar 

  • Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857): 739-743

    PubMed  CAS  Google Scholar 

  • Sterner DE and Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2): 435-459

    Google Scholar 

  • Sugai F, Yamamoto Y, Miyaguchi K, Zhou Z, Sumi H, Hamasaki T, Goto M, Sakoda S (2004) Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci 20(11): 3179-3183

    PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272(5260): 408-411

    PubMed  CAS  Google Scholar 

  • Taylor JP, Taye AA, Campbell C, Kazemi-Esfarjani P, Fischbeck KH, Min KT (2003) Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev 17(12): 1463-1468

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272(29): 17907-17911

    PubMed  CAS  Google Scholar 

  • Tong JJ, Liu J, Bertos NR, Yang XJ (2002) Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res 30(5): 1114-1123

    PubMed  CAS  Google Scholar 

  • Torchia J, Glass C, Rosenfeld MG (1998) Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 10(3): 373-383

    PubMed  CAS  Google Scholar 

  • Trinh E, Boutillier AL, Loeffler JP (2001) Regulation of the retinoblastoma-dependent Mdm2 and E2F-1 signaling pathways during neuronal apoptosis. Mol Cell Neurosci 17(2): 342-353

    PubMed  CAS  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkuhler C, Di Marco S (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 101(42): 15064-15069

    PubMed  CAS  Google Scholar 

  • Varier RA, Swaminathan V, Balasubramanyam K, Kundu TK (2004) Implications of small molecule activators and inhibitors of histone acetyltransferases in chromatin therapy. Biochem Pharmacol 68(6): 1215-1220

    PubMed  CAS  Google Scholar 

  • Verdel A, Curtet S, Brocard MP, Rousseaux S, Lemercier C, Yoshida M, Khochbin S (2000) Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Curr Biol 10(12): 747-749

    PubMed  CAS  Google Scholar 

  • Vigushin DM, Coombes RC (2002) Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 13(1): 1-13

    PubMed  CAS  Google Scholar 

  • Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276(17): 13505-13508

    PubMed  CAS  Google Scholar 

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang XJ (1999) HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 19(11): 7816-7827

    PubMed  CAS  Google Scholar 

  • Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ (2000) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20(18): 6904-6912

    PubMed  CAS  Google Scholar 

  • West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98(20): 11024-11031

    PubMed  CAS  Google Scholar 

  • Yang WM, Inouye C, Zeng Y, Bearss D, Seto E (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci U S A 93(23): 12845-12850

    PubMed  CAS  Google Scholar 

  • Yoshida M, Nomura S, Beppu T (1987) Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res 47(14): 3688-3691

    PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265(28): 17174-17179

    PubMed  CAS  Google Scholar 

  • Yu ZX, Li SH, Nguyen HP, Li XJ (2002) Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Hum Mol Genet 11(8):905-914.

    PubMed  CAS  Google Scholar 

  • Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J Biol Chem 276(34): 31674-31683

    PubMed  CAS  Google Scholar 

  • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4): 479-488

    PubMed  CAS  Google Scholar 

  • Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M, Washington SL, Maxwell MM, Marsh JL, Thompson LM, Wanker EE, Young AB, Housman DE, Bates GP, Sherman MY, Kazantsev AG (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 102(3): 892-897

    PubMed  CAS  Google Scholar 

  • Zhou X, Richon VM, Rifkind RA, Marks PA (2000) Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A 97(3): 1056-1061

    PubMed  CAS  Google Scholar 

  • Zhou X, Marks PA, Rifkind RA, Richon VM (2001) Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 98(19): 10572-10577

    PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23: 217-247

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Anne-Laurence, B., Caroline, R., Irina, P., Jean-Philippe, L. (2007). Chromatin Acetylation Status in the Manifestation of Neurodegenerative Diseases. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_12

Download citation

Publish with us

Policies and ethics