Skip to main content

Structural Organization of Dynamic Chromatin

  • Chapter
Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB et al (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. Embo J 18: 1923–1938

    PubMed  CAS  Google Scholar 

  • Adachi Y, Kas E, Laemmli UK (1989) Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. Embo J 8: 3997–4006

    PubMed  CAS  Google Scholar 

  • Adachi Y, Luke M, Laemmli UK (1991) Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell 64: 137–148

    PubMed  CAS  Google Scholar 

  • Adolph KW, Kreisman LR, Kuehn RL (1986) Assembly of chromatin fibers into metaphase chromosomes analyzed by transmission electron microscopy and scanning electron microscopy. Biophys J 49: 221–231

    PubMed  CAS  Google Scholar 

  • Agresti A, Bianchi ME (2003) HMGB proteins and gene expression. Curr Opin Genet Dev 13: 170–178

    PubMed  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156: 419–424

    PubMed  CAS  Google Scholar 

  • Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88: 10148–10152

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124

    PubMed  CAS  Google Scholar 

  • Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3: 39–44

    PubMed  CAS  Google Scholar 

  • Becker PB, Wu C (1992) Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12: 2241–2249

    PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (1999) Stopped at the border: boundaries and insulators. Curr Opin Genet Dev 9: 191–198

    PubMed  CAS  Google Scholar 

  • Belmont AS, Bruce K (1994) Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol 127: 287–302

    PubMed  CAS  Google Scholar 

  • Bennink ML, Leuba SH, Leno GH, Zlatanova J, de Grooth BG, Greve J (2001) Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat Struct Biol 8: 606–610

    PubMed  CAS  Google Scholar 

  • Berger JM, Gamblin SJ, Harrison SC, Wang JC (1996) Structure and mechanism of DNA topoisomerase II. Nature 379: 225–232

    PubMed  CAS  Google Scholar 

  • Berrios M, Osheroff N, Fisher PA (1985) In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc Natl Acad Sci U S A 82: 4142–4146

    PubMed  CAS  Google Scholar 

  • Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15: 496–506

    PubMed  CAS  Google Scholar 

  • Bonaldi T, Langst G, Strohner R, Becker PB, Bianchi ME (2002) The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. Embo J 21: 6865–6873

    PubMed  CAS  Google Scholar 

  • Buschhausen G, Wittig B, Graessmann M, Graessmann A (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A 84: 1177–1181

    PubMed  CAS  Google Scholar 

  • Bustin M (2001) Chromatin unfolding and activation by HMGN(*) chromosomal proteins. Trends Biochem Sci 26: 431–437

    PubMed  CAS  Google Scholar 

  • Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM (2004) Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc Natl Acad Sci U S A 101: 16495–16500

    PubMed  CAS  Google Scholar 

  • Catez F, Brown DT, Misteli T, Bustin M (2002) Competition between histone H1 and HMGN proteins for chromatin binding sites. EMBO Rep 3: 760–766

    PubMed  CAS  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999) Regulation of transcription by a protein methyltransferase. Science 284: 2174–2177

    PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12: 439–445

    PubMed  CAS  Google Scholar 

  • Croston GE, Kadonaga JT (1993) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Curr Opin Cell Biol 5: 417–423

    PubMed  CAS  Google Scholar 

  • de Frutos M, Raspaud E, Leforestier A, Livolant F (2001) Aggregation of nucleosomes by divalent cations. Biophys J 81: 1127–1132

    PubMed  Google Scholar 

  • de la Barre AE, Gerson V, Gout S, Creaven M, Allis CD, Dimitrov S (2000) Core histone N-termini play an essential role in mitotic chromosome condensation. Embo J 19: 379–391

    PubMed  Google Scholar 

  • de Lanerolle P, Johnson T, Hofmann WA (2005) Actin and myosin I in the nucleus: what next? Nat Struct Mol Biol 12: 742–746

    PubMed  Google Scholar 

  • Ding HF, Bustin M, Hansen U (1997) Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14. Mol Cell Biol 17: 5843–5855

    PubMed  CAS  Google Scholar 

  • Ellwood KB, Yen YM, Johnson RC, Carey M (2000) Mechanism for specificity by HMG-1 in enhanceosome assembly. Mol Cell Biol 20: 4359–4370

    PubMed  CAS  Google Scholar 

  • Felsenfeld G, McGhee JD (1986) Structure of the 30 nm chromatin fiber. Cell 44: 375–377

    PubMed  CAS  Google Scholar 

  • Felts SJ, Weil PA, Chalkley R (1990) Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Mol Cell Biol 10: 2390–2401

    PubMed  CAS  Google Scholar 

  • Fey EG, Krochmalnic G, Penman S (1986) The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Biol 102: 1654–1665

    PubMed  CAS  Google Scholar 

  • Fisher PA, Berrios M, Blobel G (1982) Isolation and characterization of a proteinaceous subnuclear fraction composed of nuclear matrix, peripheral lamina, and nuclear pore complexes from embryos of Drosophila melanogaster. J Cell Biol 92: 674–686

    PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1986) The organisation of chromatin loops: characterization of a scaffold attachment site. Embo J 5: 511–518

    PubMed  CAS  Google Scholar 

  • Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A 72: 1843–1847

    PubMed  CAS  Google Scholar 

  • Godde JS, Widom J (1992) Chromatin structure of Schizosaccharomyces pombe. A nucleosome repeat length that is shorter than the chromatosomal DNA length. J Mol Biol 226: 1009–1025

    PubMed  CAS  Google Scholar 

  • Gonsior SM, Platz S, Buchmeier S, Scheer U, Jockusch BM, Hinssen H (1999) Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J Cell Sci 112(Pt 6): 797–809

    PubMed  CAS  Google Scholar 

  • Goodwin GH, Sanders C, Johns EW (1973) A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38: 14–19

    PubMed  CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274: 25543–25549

    PubMed  CAS  Google Scholar 

  • Gurley LR, D’Anna, JA, Barham SS, Deaven LL, Tobey RA (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 84: 1–15

    PubMed  CAS  Google Scholar 

  • Harata M, Oma Y, Mizuno S, Jiang YW, Stillman DJ, Wintersberger U (1999) The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones. Mol Biol Cell 10: 2595–2605

    PubMed  CAS  Google Scholar 

  • Hayes JJ, Lee KM (1997) In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins. Methods 12: 2–9

    PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D, Gautier T (1994) The chromosome periphery during mitosis. Bioessays 16: 179–185

    PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89: 511–521

    PubMed  CAS  Google Scholar 

  • Hizume K, Yoshimura SH, Maruyama H, Kim J, Wada H, Takeyasu K (2002) Chromatin reconstitution: development of a salt-dialysis method monitored by nano-technology. Arch Histol Cytol 65: 405–413

    PubMed  CAS  Google Scholar 

  • Hizume K, Yoshimura SH, Takeyasu K (2004) Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics. Cell Biochem Biophys 40: 249–262

    PubMed  CAS  Google Scholar 

  • Hizume K, Yoshimura SH, Takeyasu K (2005) Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry 44: 12978–12989

    PubMed  CAS  Google Scholar 

  • Hofmann WA, de Lanerolle P (2006) Nuclear actin: to polymerize or not to polymerize. J Cell Biol 172: 495–496

    PubMed  CAS  Google Scholar 

  • Horn PJ, Peterson CL (2002) Molecular biology: Chromatin higher order folding – Wrapping up transcription. Science 297: 1824–1827

    PubMed  CAS  Google Scholar 

  • Hoshi O, Ushiki T (2001) Three-dimensional structure of G-banded human metaphase chromosomes observed by atomic force microscopy. Arch Histol Cytol 64: 475–482

    PubMed  CAS  Google Scholar 

  • Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined ‘‘30 nm’’ chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345: 957–968

    PubMed  CAS  Google Scholar 

  • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145–155

    PubMed  CAS  Google Scholar 

  • Jackson DA, Cook PR (1995) The structural basis of nuclear function. Int Rev Cytol 162A: 125–149

    PubMed  CAS  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6: 3862–3872

    PubMed  CAS  Google Scholar 

  • Jarman AP, Higgs DR (1988) Nuclear scaffold attachment sites in the human globin gene complexes. Embo J 7: 3337–3344

    PubMed  CAS  Google Scholar 

  • Karymov MA, Tomschik M, Leuba SH, Caiafa P, Zlatanova J (2001) DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. Faseb J 15: 2631–2641

    PubMed  CAS  Google Scholar 

  • Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113(Pt 18): 3217–3226

    PubMed  CAS  Google Scholar 

  • Keller W (1975) Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci U S A 72: 4876–4880

    PubMed  CAS  Google Scholar 

  • Kelly TJ, Qin S, Gottschling DE, Parthun MR (2000) Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol Cell Biol 20: 7051–7058

    PubMed  CAS  Google Scholar 

  • Kimura A, Matsubara K, Horikoshi M (2005) A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem (Tokyo) 138: 647–662

    CAS  Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90: 625–634

    PubMed  CAS  Google Scholar 

  • Kobori T, Kodama M, Hizume K, Yoshimura SH, Ohtani T, Takeyasu K (2006) Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40 nm structural unit. J Electron Microsc (Tokyo) 55: 31–40

    CAS  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184: 868–871

    PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120

    PubMed  CAS  Google Scholar 

  • Lane NJ (1969) Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J Cell Biol 40: 286–291

    PubMed  CAS  Google Scholar 

  • Leuba SH, Yang G, Robert C, Samori B, van Holde K, Zlatanova J, Bustamante C (1994) Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc Natl Acad Sci U S A 91: 11621–11625

    PubMed  CAS  Google Scholar 

  • Leuba SH, Bustamante C, van Holde K, Zlatanova J (1998) Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers. Biophys J 74: 2830–2839

    PubMed  CAS  Google Scholar 

  • Li G, Sudlow G, Belmont AS (1998) Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J Cell Biol 140: 975–989

    PubMed  CAS  Google Scholar 

  • Lu W, Peterson R, Dasgupta A, Scovell WM (2000) Influence of HMG-1 and adenovirus oncoprotein E1A on early stages of transcriptional preinitiation complex assembly. J Biol Chem 275: 35006–35012

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260

    PubMed  CAS  Google Scholar 

  • Lusser A, Kadonaga JT (2004) Strategies for the reconstitution of chromatin. Nat Methods 1: 19–26

    PubMed  CAS  Google Scholar 

  • Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4: 467–480

    PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157: 579–589

    PubMed  CAS  Google Scholar 

  • Mangenot S, Leforestier A, Vachette P, Durand D, Livolant F (2002) Salt-induced conformation and interaction changes of nucleosome core particles. Biophys J 82: 345–356

    PubMed  CAS  Google Scholar 

  • Marsden MP, Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17: 849–858

    PubMed  CAS  Google Scholar 

  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939

    PubMed  CAS  Google Scholar 

  • McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49: 1115–1156

    PubMed  CAS  Google Scholar 

  • Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142: 1595–1604

    PubMed  CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24

    PubMed  CAS  Google Scholar 

  • Nabirochkin S, Ossokina M, Heidmann T (1998) A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence. J Biol Chem 273: 2473–2479

    PubMed  CAS  Google Scholar 

  • Nakai T, Hizume K, Yoshimura SH, Takeyasu K, Yoshikawa K (2005) Phase transition in reconstituted chromatin. Europhysics Letters 69: 1024–1030

    CAS  Google Scholar 

  • Namciu SJ, Blochlinger KB, Fournier RE (1998) Human matrix attachment regions insulate transgene expression from chromosomal position effects in Drosophila melanogaster. Mol Cell Biol 18: 2382–2391

    PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487

    PubMed  CAS  Google Scholar 

  • Nettikadan SR, Furbee CS, Muller MT, Takeyasu K (1998) Molecular structure of human topoisomerase II alpha revealed by atomic force microscopy. J Electron Microsc (Tokyo) 47: 671–674

    CAS  Google Scholar 

  • Nickerson J (2001) Experimental observations of a nuclear matrix. J Cell Sci 114: 463–474

    PubMed  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20: 214–220

    PubMed  CAS  Google Scholar 

  • O’Neill TE, Roberge M, Bradbury EM (1992) Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase. J Mol Biol 223: 67–78

    PubMed  CAS  Google Scholar 

  • Ohfuchi E, Kato M, Sasaki M, Sugimoto K, Oma Y, Harata M (2006) Vertebrate Arp6, a novel nuclear actin-related protein, interacts with heterochromatin protein 1. Eur J Cell Biol 85: 411–421

    PubMed  CAS  Google Scholar 

  • Ohniwa RL, Morikawa K, Kim J, Kobori T, Hizume K, Matsumi R, Atomi H, Imanaka T, Ohta T, Yoshimura SH, Takeyasu K (2006) Atomic Force Microscopy Dissects the Hierarchy of Genome Architectures in Eukaryote, Prokaryote and Chloroplast. Microscopy & Microanalysis 13:1–10

    Google Scholar 

  • Ohsumi K, Katagiri C, Kishimoto T (1993) Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262: 2033–2035

    PubMed  CAS  Google Scholar 

  • Olave IA, Reck-Peterson SL, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71: 755–781

    PubMed  CAS  Google Scholar 

  • Olins DE, Olins AL (1972) Physical studies of isolated eucaryotic nuclei. J Cell Biol 53: 715–736

    PubMed  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115: 109–121

    PubMed  CAS  Google Scholar 

  • Opel ML, Arfin SM, Hatfield GW (2001) The effects of DNA supercoiling on the expression of operons of the ilv regulon of Escherichia coli suggest a physiological rationale for divergently transcribed operons. Mol Microbiol 39: 1109–1115

    PubMed  CAS  Google Scholar 

  • Owen-Hughes T, Workman JL (1994) Experimental analysis of chromatin function in transcription control. Crit Rev Eukaryot Gene Expr 4: 403–441

    PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12: 817–828

    PubMed  CAS  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14, R546–551

    PubMed  CAS  Google Scholar 

  • Pfaffle P, Gerlach V, Bunzel L, Jackson V (1990) In vitro evidence that transcription-induced stress causes nucleosome dissolution and regeneration. J Biol Chem 265: 16830–16840

    PubMed  CAS  Google Scholar 

  • Poch O, Winsor B (1997) Who’s who among the Saccharomyces cerevisiae actin-related proteins? A classification and nomenclature proposal for a large family. Yeast 13: 1053–1058

    PubMed  CAS  Google Scholar 

  • Preuss U, Landsberg G, Scheidtmann KH (2003) Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31: 878–885

    PubMed  CAS  Google Scholar 

  • Prymakowska-Bosak M, Misteli T, Herrera JE, Shirakawa H, Birger Y, Garfield S, Bustin M (2001) Mitotic phosphorylation prevents the binding of HMGN proteins to chromatin. Mol Cell Biol 21: 5169–5178

    PubMed  CAS  Google Scholar 

  • Rattner JB, Hamkalo BA (1979) Nucleosome packing in interphase chromatin. J Cell Biol 81: 453–457

    PubMed  CAS  Google Scholar 

  • Rattner JB, Lin CC (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42: 291–296

    PubMed  CAS  Google Scholar 

  • Rattner JB, Saunders C, Davie JR, Hamkalo BA (1982) Ultrastructural organization of yeast chromatin. J Cell Biol 93: 217–222

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599

    PubMed  CAS  Google Scholar 

  • Rhodes D, Klug A (1981) Sequence-dependent helical periodicity of DNA. Nature 292: 378–380

    PubMed  CAS  Google Scholar 

  • Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133: 235–246

    PubMed  CAS  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191: 659–675

    PubMed  CAS  Google Scholar 

  • Sato MH, Ura K, Hohmura KI, Tokumasu F, Yoshimura SH, Hanaoka F, Takeyasu K (1999) Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. FEBS Lett 452: 267–271

    PubMed  CAS  Google Scholar 

  • Schafer DA, Schroer TA (1999) Actin-related proteins. Annu Rev Cell Dev Biol 15: 341–363

    PubMed  CAS  Google Scholar 

  • Schurter BT, Koh SS, Chen D, Bunick GJ, Harp JM, Hanson BL, Henschen-Edman A, Mackay DR, Stallcup MR, Aswad DW (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40: 5747–5756

    PubMed  CAS  Google Scholar 

  • Shen X, Yu L, Weir JW, Gorovsky MA (1995) Linker histones are not essential and affect chromatin condensation in vivo. Cell 82: 47–56

    PubMed  CAS  Google Scholar 

  • Simon RH, Felsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6: 689–696

    PubMed  CAS  Google Scholar 

  • Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17: 5524–5531

    PubMed  CAS  Google Scholar 

  • Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci U S A 80: 51–55

    PubMed  CAS  Google Scholar 

  • Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42: 799–808

    PubMed  CAS  Google Scholar 

  • Sugiyama S, Yoshino T, Kanahara H, Kobori T, Ohtani T (2003) Atomic force microscopic imaging of 30 nm chromatin fiber from partially relaxed plant chromosomes. Scanning 25: 132–136

    PubMed  CAS  Google Scholar 

  • Sugiyama S, Yoshino T, Kanahara H, Shichiri M, Fukushi D, Ohtani T (2004) Effects of acetic acid treatment on plant chromosome structures analyzed by atomic force microscopy. Anal Biochem 324: 39–44

    PubMed  CAS  Google Scholar 

  • Sutrias-Grau M, Bianchi ME, Bernues J (1999) High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex. J Biol Chem 274: 1628–1634

    PubMed  CAS  Google Scholar 

  • Tamayo J, Miles M (2000) Human chromosome structure studied by scanning force microscopy after an enzymatic digestion of the covering cell material. Ultramicroscopy 82: 245–251

    PubMed  CAS  Google Scholar 

  • Taniguchi T, Takayama S (1986) High-order structure of metaphase chromosomes: evidence for a multiple coiling model. Chromosoma 93: 511–514

    PubMed  CAS  Google Scholar 

  • Tatchell K, Van Holde KE (1977) Reconstitution of chromatin core particles. Biochemistry 16: 5295–5303

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T (1977) Influence of histone H1 on chromatin structure. Cell 12: 101–107

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83: 403–427

    PubMed  CAS  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384

    PubMed  CAS  Google Scholar 

  • Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T et al (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280: 16994–17004

    PubMed  CAS  Google Scholar 

  • Udvardy A, Maine E, Schedl P (1985) The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol 185: 341–358

    PubMed  CAS  Google Scholar 

  • Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50: 917–925

    PubMed  CAS  Google Scholar 

  • Ushiki T, Hoshi O, Iwai K, Kimura E, Shigeno M (2002) The structure of human metaphase chromosomes: its histological perspective and new horizons by atomic force microscopy. Arch Histol Cytol 65: 377–390

    PubMed  CAS  Google Scholar 

  • Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111(Pt 23): 3497–3506

    PubMed  Google Scholar 

  • Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11: 1227–1239

    PubMed  CAS  Google Scholar 

  • Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van Driel R (2005) In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol 25: 4552–4564

    PubMed  CAS  Google Scholar 

  • Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–857

    PubMed  CAS  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3: 430–440

    PubMed  CAS  Google Scholar 

  • Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci U S A 95: 7480–7484

    PubMed  CAS  Google Scholar 

  • Widom J, Klug A (1985) Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell 43: 207–213

    PubMed  CAS  Google Scholar 

  • Williams RR (2003) Transcription and the territory: the ins and outs of gene positioning. Trends Genet 19: 298–302

    PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880

    PubMed  CAS  Google Scholar 

  • Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99: 42–52

    PubMed  CAS  Google Scholar 

  • Worcel A, Burgi E (1972) On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71: 127–147

    PubMed  CAS  Google Scholar 

  • Yoshimura SH, Ohniwa RL, Sato MH, Matsunaga F, Kobayashi G, Uga H, Wada C, Takeyasu K (2000) DNA phase transition promoted by replication initiator. Biochemistry 39: 9139–9145

    PubMed  CAS  Google Scholar 

  • Yoshimura SH, Hizume K, Murakami A, Sutani T, Takeyasu K, Yanagida M (2002) Condensin architecture and interaction with DNA. Regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr Biol 12: 508–513

    PubMed  CAS  Google Scholar 

  • Yoshimura SH, Kim J, Takeyasu K (2003) On-substrate lysis treatment combined with scanning probe microscopy revealed chromosome structures in eukaryotes and prokaryotes. J Electron Microsc (Tokyo) 52: 415–423

    Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309: 1519–1524

    PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95: 625–636

    PubMed  CAS  Google Scholar 

  • Zheng C, Hayes JJ (2003) Structures and interactions of the core histone tail domains. Biopolymers 68: 539–546

    PubMed  CAS  Google Scholar 

  • Zlatanova J, Leuba SH, van Holde K (1999) Chromatin structure revisited. Crit Rev Eukaryot Gene Expr 9: 245–255

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hizume, K., Yoshimura, S.H., Kumeta, M., Takeyasu, K. (2007). Structural Organization of Dynamic Chromatin. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_1

Download citation

Publish with us

Policies and ethics