Skip to main content

Nitrile Hydrolases

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almatawah Q.A., Cramp R. and Cowan D.A. (1999). Characterization of an inducible nitrilase from a thermophilic Bacillus. Extremophiles 3, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A., Sharma R. and Banerjee U.C. (2002). Nitrile degrading enzymes: current status and future prospects. Appl. Microbiol. Biotechnol. 60, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A., Sharma R. and Banerjee U.C. (2003a). A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnol. Appl. Biochem. 37, 289–293.

    Article  CAS  Google Scholar 

  • Banerjee A., Kaul P., Sharma R. and Banerjee U.C. (2003b). A rapid colorimetric assay for enantioselective screening of nitrilase producing micro-organisms using pH sensitive indicators. J. Biomol. Screen. 8, 269–275.

    Article  CAS  Google Scholar 

  • Bartel B. and Fink G.R. (1994). Differential regulation of an auxin producing nitrilase gene family in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 91, 6649–6653.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bartling D., Seedorf M., Mithofer A. and Weiler E.W. (1992). Cloning and expression of an Arabidopsis nitrilase which can convert indole 3-acetonitrile to the plant hormone indole 3-acetic acid. Eur. J. Biochem. 205, 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Baumann M., Hauer B.H. and Bornscheuer U.T. (2000). Rapid screening of hydrolases for the enantioselective conversion of difficult to resolve substrates. Tetrahedron: Asymmetry 11, 4781–4790.

    Article  CAS  Google Scholar 

  • Bestwick L.A., Gronning L.M., James D.C., Bones A. and Rossiter J.T. (1993). Purification and characterization of a nitrilase from Brassica nupus. Physiol. Plant 89, 811–816.

    Article  CAS  Google Scholar 

  • Bhalla T.C., Miura A., Wakamoto A., Ohba Y. and Furuhashi K. (1992). Asymmetric hydrolysis of alpha aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl. Microbiol. Biotechnol. 37, 184–190.

    Article  CAS  Google Scholar 

  • Brenner C. (2002). Catalysis in the nitrilase superfamily. Curr. Opin. Strc. Biol. 12, 775–782.

    Article  CAS  Google Scholar 

  • Cawston T. (1996). Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol. Ther. 70, 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Chassin C. (1996). A biotechnological process for the production of nicotinamide. Chim. Oggi 14, 9–12.

    CAS  Google Scholar 

  • Chebrou H., Bigey F., Arnaud A. and Glazy P. (1996). Study of the amidase signature group. Biochem. Biophys. Acta. 1298, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Dadd M.R., Sharp D.C.A., Pettman A.J. and Knowles C.J. (2000). Real-time monitoring of nitrile biotransformations by mid-infrared spectroscopy. J. Microb. Meth. 41, 69–75.

    Article  CAS  Google Scholar 

  • DiCosimo R., Fallon R.D., Gavagan J.E. and Herkes F.E. (2000) US Patent 6066490, to E.I. DuPont, USA.

    Google Scholar 

  • Endo T. and Tamura K. (1993) US Patent 5223416, to Nitto Chemical Industry Co. Ltd., Japan.

    Google Scholar 

  • Endo I., Okada M. and Yohda M. (1999). An enzyme controlled by light: the molecular mechanism of photoreactivity in nitrile hydratase. Trends in Biotechnol. 17, 244–248.

    Article  CAS  Google Scholar 

  • Faber K. (1997) Biotransformation in organic chemistry: A textbook. Berlin: Springer.

    Google Scholar 

  • Fawcett J.K. and Scott J.E. (1960). A rapid and precise method for the determination of urea. J. Clin. Pathol. 13, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Fournand D., Bigey F. and Arnaud A. (1998). Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl. Environ. Microbiol. 64, 2844–2852.

    PubMed  CAS  Google Scholar 

  • Freyssinet G., Peleissier B., Fressinet M. and Delon R. (1996). Crops resistant to oxynils: From laboratory to market. Field Crops Res. 45, 125–133.

    Article  Google Scholar 

  • Gao W., Mitsuya H., Driscoll J. and Johns D. (1995). Enhancement by hydroxyurea of the antihuman immunodefficiency virus type 1 potency of 2’- β-fluoro-2’, 3’dideoxyadenosine in peripheral blood mononuclear cells. Biochem. Pharmacol. 50, 274–276.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons B.H. and Edsall J.T. (1963). Rate of hydration of carbon dioxide and dehydration of carbonic anhydrase at 25 ˆC. J. Biol. Chem. 238, 3502–3507.

    PubMed  CAS  Google Scholar 

  • Godtfredsen S.E., Ingvorsen K., Yde B. and Anderson O. (1985). Biocatalysis in organic synthesis. Amsterdam: Elsevier.

    Google Scholar 

  • Goldhust A. and Bohak Z. (1989). Induction, purification and characterization of the nitrilase of Fusarium oxysporum. Biotechnol. Appl. Biochem. 11, 581–601.

    Google Scholar 

  • Harper D.B. (1977). Fungal degradation of aromatic nitriles: Enzymology of C-N cleavage by Fusarium solani. Biochem. J. 167, 685–692.

    PubMed  CAS  Google Scholar 

  • Hashimoto Y., Kobayashi E., Endo T., Nishiyama M. and Horinouchi S. (1996). Conversion of a cyanohydrin compound into S-(-)-3-phenyllactic acid by enantioselective hydrolytic activity of Pseudomonas sp. BC-18. Biosci. Biotech. Biochem. 60, 1273–1283.

    Article  Google Scholar 

  • Hillebrand H., Bartling D. and Weiler E.W. (1998). Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole 3-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol. Biol. 36, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Hook R.H. and Robinson W.G. (1964). Ricinine nitrilase II. Purification and properties. J. Biol. Chem. 239, 4263–4267.

    PubMed  CAS  Google Scholar 

  • Huang W., Jia J., Cummings J., Nelson M., Schneder G. and Lindqvist Y. (1997). Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold.rystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5, 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Kato Y., Nakamura K., Sakiyama H., Mathew S.G. and Asano Y. (2000). Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus Sp. strain OxB-1: Purification, characterization and molecular cloning of the gene. Biochemistry 39, 800–809.

    Article  PubMed  CAS  Google Scholar 

  • Kaul P., Banerjee A. and Banerjee U. (2004a). Biocatalysis: Applications and potential for the pharmaceutical industry. Drug Discov. World Spring Issue: 80–86.

    Google Scholar 

  • Kaul P., Banerjee A., Mayilraj S. and Banerjee U.C. (2004b). Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry 15, 207–211.

    Article  CAS  Google Scholar 

  • Khachadurian A., Knox W.E. and Cullen A.M. (1960). Colorimetric ninhydrin method for total alpha amino acids of urine. J. Lab. Clin. Med. 56, 321–325.

    PubMed  CAS  Google Scholar 

  • Kobayashi K., Yanaka N., Nagasawa T. and Yamada H. (1992). Primary structure of an aliphatic nitrilase from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry 31, 9000–9007.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M., Izui H., Nagasawa T. and Yamada H. (1993). Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: Cloning of the Alcaligenes gene and site directed mutagenesis of cysteine residues. Proc. Natl. Acad. Sci. USA 90, 247–251.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kobayashi M. and Shimizu S. (1994). Versatile nitrilases: Nitrile-hydrolysing enzymes. FEMS Microbiol. Lett. 120, 217–224.

    Article  CAS  Google Scholar 

  • Kobayashi M., Goda M. and Shimizu S. (1998). Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. Biochem. Biophys. Res. Comm. 253, 662–666.

    Article  PubMed  CAS  Google Scholar 

  • Komeda H., Hori Y., Kobayashi M. and Shimizu S. (1996a). Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc. Natl. Acad. Sci. USA 93, 10572–10577.

    Article  ADS  CAS  Google Scholar 

  • Komeda H., Kobayashi M. and Shimizu S. (1996b). A novel gene cluster including the R. rhodochrous J1 nhi BA genes encoding a new low molecular mass nitrile hydratase (L-NHase) induced by it’s reaction product. J. Biol. Chem. 271, 15796–15802.

    Article  CAS  Google Scholar 

  • Krallmann-Wenzel U. (1985). An improved method of ammonia determination, applicable to amidases and other ammonia producing enzyme systems of mycobacteria. Am. Rev. Respir. Dis. 131, 432–434.

    PubMed  CAS  Google Scholar 

  • Kruse J.M. and Mellon M.J. (1953). Colorimetric determination of ammonia and cyanate. Anal. Chem. 25, 1188–1192.

    Article  CAS  Google Scholar 

  • Layh N., Parratt J. and Willetts A. (1998). Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J. Mol. Cat. B: Enz. 5, 467–474.

    Article  CAS  Google Scholar 

  • Lebuhn M. and Hartmann A. (1993). Method for the determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soils. J. Chromat. A 629, 255–266.

    Article  CAS  Google Scholar 

  • Lowry O.H., Roberts N.R., Wu M.L., Hixon W.S. and Crawford E.J. (1954). The quantitave histochemistry of brain II - Enzymatic measurements. J. Biol. Chem. 207, 19–37.

    PubMed  CAS  Google Scholar 

  • Martin R.G. and Rosner J.L. (2001). The AraC transcrptional activators. Curr. Opin. Microbiol. 4, 132–137.

    Article  PubMed  CAS  Google Scholar 

  • McBride K.E., Kenny J.W. and Stalker D.M. (1986). Metabolism of the herbicide bromoxynil by Klebsiella pneumomiae subsp. ozanae. Appl. Environ. Microbiol. 52, 325–330.

    PubMed  CAS  Google Scholar 

  • Muller D. and Gabriel J. (1999). Bacterial degradation of the herbicide bromoxynil by Agrobacterium radiobacter in biofilm. Folia Mikrobiologia 44, 377–379.

    Article  CAS  Google Scholar 

  • Nagasawa T., Takeuchi K., Nardi-Devi V., Mihara Y. and Yamada H. (1991). Optimum culture conditions for the production of cobalt containing nitrile hydratase by Rhodococcus rhodochrous J1. Appl. Microbiol. Biotechnol 34, 783–788.

    Article  CAS  Google Scholar 

  • Nagasawa T. (1993). The superiority of the third generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl. Microbiol. Biotechnol. 40, 189–195.

    Article  CAS  Google Scholar 

  • Nagasawa T., Wieser M., Nakamura T., Iwahara H., Yoshida T. and Gekko K. (2000). Nitrilase of Rhodococcus rhodochrous J1, conversion into the active form by subunit association. Eur. J. Biochem. 267, 138–144.

    Article  PubMed  CAS  Google Scholar 

  • Nakai T., Hasegawa T., Yamashita E., Yamamoto M., Kumaska T., Ueki T., Nanba H., Ikenaka Y., Sato M. and Tsukihara T. (2000). Crystal structue of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amido hydrolases. Structure 8, 729–739.

    Article  PubMed  CAS  Google Scholar 

  • Nawaz M., Khan A., Bhattacharya D., Sittoneu P. and Cerniglia C. (1996). Physical, biochemical, and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J. Bacteriol. 178, 2397–2401.

    PubMed  CAS  Google Scholar 

  • Nishise H., Kurihara M. and Tani Y. (1987). Microbial synthesis of tranexamic acid intermediate from dinitrile. Agric. Biol. Chem. 51, 2613–2616.

    CAS  Google Scholar 

  • O’Reilly C. and Turner P.D. (2003). The nitrilase family of CN hydrolysing enzymes – a comparative study. J. Appl. Microbiol. 95, 1161–1174.

    Article  PubMed  CAS  Google Scholar 

  • Pace H.C. and Brenner C. (2001). The nitrilase superfamily: Classification, structure and function. Genome Biol. 2, 1–9.

    Article  Google Scholar 

  • Patel R.N. (2001). Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr. Opin. Biotechnol. 12, 587–604.

    Article  PubMed  CAS  Google Scholar 

  • Payne M., Wu S., Fallon R., Tudor G., Turner I., Steglitz B. and Nelson M. (1997). A stereoselective cobalt containing nitrile hydratase. Biochemistry 36, 5447–5454.

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski M., Schonfelder S. and Weiler E.W. (2001). The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta cyano L-alanine hydratase/nitrilase. J. Biol. Chem. 276, 2616–2621.

    Article  PubMed  CAS  Google Scholar 

  • Pollak P., Romender G., Hagedorn F. and Gelbke H.P. (1991) Ullmans encyclopaedia of industrial chemistry. Weinheim: Wiley – VCH.

    Google Scholar 

  • Ress-Loschke M., Friedrich T., Hauer B., Mattes R. and Engels D. (1998) DE198448129A1, to BASF.

    Google Scholar 

  • Schill S. Levy, Soubrier F., Coq A.M.C.-L., Faucher D., Crouzet J. and Petre D. (1995). Aliphatic nitrilase from a soil isolated Comamonas testoteroni sp. gene cloning and overexpression, purification and primary structure. Gene 161, 15–20.

    Article  Google Scholar 

  • Schmid A., Dordick J.S., Hauer B., Kiener A., Wubbolts M. and Witholt B. (2001). Industrial biocatalysis today and tomorrow. Nature 409, 258–268.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Simons S.S. and Johnson D.F. (1976). The structure of the fluorescent adduct formed in the reaction of o-phthalaldehyde and thiols with amines. J. Am. Chem. Soc. 98, 7098–7099.

    Article  CAS  Google Scholar 

  • Simons S.S. and Johnson D.F. (1978). Reaction of o-phthalaldehyde and thiols with primary amines: formation of 1-alkyl(and aryl)thio-2-alkylisoindoles. J. Org. Chem. 43, 2886–2891.

    Article  CAS  Google Scholar 

  • Solomonson L.P. and Spehar A.M. (1981) Cyanide as a metabolic inhibitor. London: Academic Press.

    Google Scholar 

  • Stalker D.M., Mcbride K.E. and Malyj L.D. (1988). Herbicide resistence in transgenic plants expressing a bacterial detoxification gene. Science 242, 419–423

    Article  ADS  CAS  Google Scholar 

  • Sugai T., Yamazaki T., Yokoyama M. and Ohta H. (1997). Biocatalysis in organic synthesis: The use of nitrile and amide-hydrolyzing micro-organisms. Biosci. Biotech. Biochem. 61, 1419–1427.

    Article  CAS  Google Scholar 

  • Sugiura Y., Kuwahara J., Nagasawa T. and Yamada H. (1987). Nitrile hydratase: the first non-heme iron enzyme with a typical low spin Fe(III) active centre. J. Am. Chem. Soc. 109, 5848–5850.

    Article  CAS  Google Scholar 

  • Thimann K.V. and Mahadevan S. (1964). Nitrilase, its substrate specificity and possible mode of action. Arch. Biochem. Biophys. 107, 62–68.

    Article  PubMed  Google Scholar 

  • Tsunoda H. and Yamaguchi K. (1995). The cDNA sequence of an auxin producing nitrilase homologue in tobacco. Plant Physiol. 109, 339.

    Google Scholar 

  • Wu Z.L. and Li Z.Y. (2003). Biocatalytic asymmetric hydrolysis of (±)-beta hydroxy nitriles by Rhodococcus sp. CGMCC 0497. J. Mol. Cat. B: Enz. 22, 105–112.

    Article  CAS  Google Scholar 

  • Wyatt J.M. and Knowles C.J. (1995). Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and and codendsates from the manufacture of acrylonitrile. Int. Biodeter. Biodegrad. 227–248.

    Google Scholar 

  • Yamada H. and Nagasawa T. (1994) US Patent 5334519, to Nitto Chemical Industry Co. Ltd. Japan.

    Google Scholar 

  • Yamada H. and Kobayashi M. (1996). Nitrile hydratase and it’s application to industrial production of acrylamide. Biosci. Biotech. Biochem. 60, 1391–1400.

    Article  CAS  Google Scholar 

  • Yamamoto K., Ueno Y., Otsubo K., Kawakami K. and Komatsu K. (1990). Production of (S)-(+)-ibuprofen from a nitrile compound by Acinetobacter sp. AK 226. Appl. Environ. Microbiol. 56, 3125–3129.

    PubMed  CAS  Google Scholar 

  • Yamamoto K., Ueno Y., Otsubo K., Yamane H., Komatsu K. and Tani Y. (1992). Efficient conversion of dinitrile to mononitrile -monocarboxylic acid by Corynebacterium sp. C5 cells during tranexamic acid synthesis. J. Ferment. Bioeng. 73, 125–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Kaul, P., Banerjee, A., Banerjee, U.C. (2007). Nitrile Hydrolases. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_30

Download citation

Publish with us

Policies and ethics