Skip to main content

Phytase: Source, Structure and Application

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt, M., Kleist, S., Miksch, G., Friehs, K., Flaschel, E., Trierweiler, J. and Hitzmann, B. (2005). A feedforward-feedback substrate controller based on a kalman filter for a fed-batch cultivation of Escherichia coli producing phytase. Comput. Chem. Eng. 29, 1113–1120.

    CAS  Google Scholar 

  • Augspurger, N.R., Webel, D.M., Lei, X.G. and Baker, D.H. (2003). Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J. Anim. Sci. 81, 474–483.

    PubMed  CAS  Google Scholar 

  • Berka, R.M., Rey, M.W., Brown, K.M., Byun, T. and Klotz, A.V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol. 64, 4423–4427.

    PubMed  CAS  Google Scholar 

  • Bitar, K. and Reinhold, J.G. (1972). Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man. Biochim. Biophys. Acta. 268, 442–452.

    PubMed  CAS  Google Scholar 

  • Bogar, B., Szakacs, G., Linden, J.C., Pandey, A. and Tengerdy, R.P. (2003). Optimization of phytase production by solid substrate fermentation. J. Ind. Microbiol. Biotechnol. 30, 183–189.

    PubMed  CAS  Google Scholar 

  • Brinch-Pedersen, H., Hatzack, F., Stoger, E., Arcalis, E. and Holm, P.B. (2006). Heat stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability and phytate hydrolysis. J. Agric. Food Chem. In Press.

    Google Scholar 

  • Brinch-Pedersen, H., Sorensen, L.D. and Holm, P.B. (2002). Engineering crop plants: getting a handle on phosphate. Trends. Plant. Sci. 7, 118–125.

    PubMed  CAS  Google Scholar 

  • Burgess, J.R. and Gao, G. (2002). The antioxidant effects of inositol phosphates. In Food Phytates. Eds. Reddy, A.R. and Sathe. S.K. CRC Press, Bocca Raton, FL, USA. pp. 189–197.

    Google Scholar 

  • Chadha, B.S., Harmeet, G., Mandeep, M., Saini, H.S. and Singh, N. (2004). Phytase production by the thermophilic fungus Rhizomucos pusillus. World. J. Microbiol. Biotechnol. 20, 105–109.

    CAS  Google Scholar 

  • Cheng, C. and Lim, B.L. (2005). Beta-propeller phytases in the aquatic environment: characterization of a novel phytase from Shewanella oneidensis MR-1. In Inositol Phosphates in the Soil-Plant-Animal System: Linking Agriculture and Environment. Proceedings of the Bouyoucos Conference to Address the Biogeochemical Interaction of Inositol Phosphates in the Environment; Turner, B.L., Richardson, A.E., Mullaney, E.J., Eds.; Sun Valley, Idaho, USA. pp. 55–56.

    Google Scholar 

  • Cho, J.S., Lee, C.W., Kang, S.H., Lee, J.C., Bok, J.D., Moon, Y.S., Lee, H.G., Kim, S.C. and Choi, Y.J. (2003). Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr. Microbiol. 47, 290–294.

    PubMed  CAS  Google Scholar 

  • Chu, H.M., Guo, R.T., Lin, T.W., Chou, C.C., Shr, H.L., Lai, H.L., Tang, T.Y., Cheng, K.J., Selinger, B.L. and Wang, A.H.J. (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12, 2015–2024

    PubMed  CAS  Google Scholar 

  • Denbow, D.M., Grabau, E.A., Lacy, G.H., Kornegay, E.T., Russell, D.R. and Umbeck. P.F. (1998). Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult. Sci. 77, 878–881.

    PubMed  CAS  Google Scholar 

  • Denu, J.M. and Dixon, J.E. (1998) Protein tyrosine phosphatase: mechanism of catalysis and regulation. Cur. Opinion Chem. Biol. 2, 633–641.

    CAS  Google Scholar 

  • Dharmsthiti, S., Chalermpornpaisarn, S., Kiatiyajarn, M., Chanpokapaiboon, A., Klongsithidej, Y. and Techawiparut, J. (2005). Phytase production from Pseudomonas putida harboring Escherichia coli appA. Process. Biochem. 40, 789–793.

    CAS  Google Scholar 

  • Dungelhoef, M., Rodehutscord, M., Spiekers, H. and Pfeffer, E. (1994). Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Anim. Feed Sci. Technol. 49, 1–10.

    Google Scholar 

  • Ellestad, L.E., Angel, R. and Soares Jr, J.H. (2002). Intestinal phytase II: A comparison of activity and in vivo phytate hydrolysis in three teleost species with differing digestive strategies. Fish Physiol. Biochem. 26, 259–273.

    CAS  Google Scholar 

  • Fredlund, K., Bergman, E.L., Rossander-Hulthen, L., Isaksson, M., Almgren, A. and Sandberg, A.S. (2003). Hydrothermal treatment and malting of barley improve zinc absorption but not calcium absorption in humans. Eur. J. Clin. Nutr. 57, 1507–1513.

    PubMed  CAS  Google Scholar 

  • Freund, W.D., Mayr, G.W., Tietz, C. and Schultz, J.E. (1992). Metabolism of inositol phosphates in the protozoan Paramecium. Characterization of a novel inositol-hexakisphosphate-dephosphorylating enzyme. Eur. J. Biochem. 207, 359–367.

    PubMed  CAS  Google Scholar 

  • Fujita, J., Fukuda, H., Yamance, Y., Kizaki, Y., Shigeta, S., Ono, K., Suzuki, O. and Wakabayashi, S. (2001). Critical importance of phytase for yeast growth and alcohol fermentation in Japanese sake brewing. Biotechnol. Lett. 23, 867–871.

    CAS  Google Scholar 

  • Gerlach, R., Pop, O. and Müller, J.P. (2004). Tat dependent export of E. coli phytase AppA by using the PhoD-specific transport system of bacillus subtilis. J. Basic. Microbiol. 5, 351–359.

    Google Scholar 

  • Golovan, S.P., Meidinger, R.G., Ajakaiye, A., Cottrill, M., Wiederkehr, M.Z., Barney, D.J., Plante, C., Pollard, J.W., Fan, M. Z,, Hayes, M.A., Laursen, J., Hjorth, J.P., Hacker, R.R., Phillips, J.R. and Forsberg, C.W. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnol. 19, 741–745.

    CAS  Google Scholar 

  • Gregersen, P.L., Brinch-Pedersen, H. and Holm, P.B. (2005). A microarray based, comparative analysis of the gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res. 14, 887–905.

    PubMed  CAS  Google Scholar 

  • Greiner, R., Konietzny, U. and Jany, K.D. (1993). Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303, 107–113.

    PubMed  CAS  Google Scholar 

  • Greiner, R., Larsson Alminger, M., Carlsson, N.G., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M. and Goyoaga, C. (2002). Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. J. Agric. Food Chem. 50, 6865–6870.

    PubMed  CAS  Google Scholar 

  • Ha, N.C., Oh, B.C., Shin, S., Kim, H.J., Oh, T.K., Kim, Y.O., Choi, K.Y. and Oh, B.H. (2000). Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nature. Struct. Biol. 7, 147–153.

    PubMed  CAS  Google Scholar 

  • Han, Y.M., Wilson, D.B. and Lei, X.G. (1999). Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65, 1915–1918.

    PubMed  CAS  Google Scholar 

  • Han, Y.M., Yang, F., Zhou, A.G., Miller, E.R., Ku, P.K., Hogberg, M.G. and Lei, X.G. (1997). Supplemental phytases of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing. J. Anim. Sci. 75, 1017–1025.

    PubMed  CAS  Google Scholar 

  • Haros, M., Bielecka, M. and Sanz, Y. (2005). Phytase activity as a novel metabolic feature in Bifidobacterium. FEMS. Microbiol. Lett. 247, 231–239.

    PubMed  CAS  Google Scholar 

  • Haros, M., Rosell, C.M. and Benedito, C. (2001). Use of fungal phytase to improve breadmaking performance of whole wheat bread. J. Agric. Food Chem. 49, 5450–5454.

    PubMed  CAS  Google Scholar 

  • Hegeman, C.E. and Grabau, E.A. (2001). A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant. Physiol. 126, 1598–1608.

    PubMed  CAS  Google Scholar 

  • Hurrell, R.F. (2004). Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam. Nutr. Res. 74, 445–452.

    PubMed  CAS  Google Scholar 

  • Igbasan, F.A., Manner, K., Miksch, G., Borriss, R., Farouk, A. and Simon, O. (2000). Comparative studies on the in vitro properties of phytases from various microbial origins. Arch. Anim. Nutr. 53, 353–373.

    CAS  Google Scholar 

  • Jenab, M. and Thompson, L.U. (2002). Role of phytic acid in cancer and other diseases. In Food Phytates. Eds. Reddy, A.R. and Sathe, S.K. CRC Press, Boca Raton, FL, USA. pp. 225–248.

    Google Scholar 

  • Jog, S.P., Garchow, B.G., Mehta, B.D. and Murthy, P.P.N. (2005). Alkaline phytase from lily pollen: Investigation of biochemical properties. Arch. Biochem. Biophys. 440, 133–140.

    PubMed  CAS  Google Scholar 

  • Jondreville, C., Hayler, R. and Feuerstein, D. (2005). Replacement of zinc sulphate by microbial phytase for piglets given a maize-soya-bean meal diet. J. Anim. Sci. 81, 77–83.

    CAS  Google Scholar 

  • Kerovuo, J., Lauraeus, M., Nurminem, P., Kalkkinen, N. and Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64, 2079–2085.

    PubMed  CAS  Google Scholar 

  • Kerovuo, J., Von Weymarn, N., Povelainen, M., Auer, S. and Miasnikov, A. (2000). A new efficient expression system for Bacillus and its application to production of recombinant phytase. Biotechnol. Lett. 22, 1311–1317.

    CAS  Google Scholar 

  • Kim, H., Kim, Y., Lee, J., Kim, K. and Kim, Y. (2003). Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol. Lett. 25, 1231–1234.

    PubMed  CAS  Google Scholar 

  • Kim, Y.O., Kim, H.K., Bae, K.S., Yu, J.H. and Oh, T.K. (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 22, 2–7.

    CAS  Google Scholar 

  • Konietzny, U. and Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int. J. Food Sci. Tech. 37, 791–812.

    CAS  Google Scholar 

  • Kornegay, E.T., Denbow, D.M., Yi, Z. and Ravindran, V. (1996). Response of broilers to graded levels of microbial phytase added to maize-soyabean-meal-based diets containing three levels of non-phytate phosphorus. Br. J. Nutr. 75, 839–852.

    PubMed  CAS  Google Scholar 

  • Kostrewa, D., Grueninger-Leitch, F., D’Arcy, A., Broger, C., Mitchell, D. and van Loon, A.P.G.M. (1997). Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Nature Struc. Biol. 4, 185–190.

    CAS  Google Scholar 

  • Kostrewa, D., Wyss, M., D’Arcy, A. and van Loon, A.P.G.M. (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 A resolution. J. Mol. Biol. 288, 965–974.

    PubMed  CAS  Google Scholar 

  • Lan, G.Q., Abdullah, N., Jalaudin, S. and Ho, Y.W. (2002). Culture conditions influencing phytase production of Mitsuokella jalaudinii, a new bacterial species from the rumen of cattle. J. Appl. Microbiol. 93, 668–674.

    PubMed  CAS  Google Scholar 

  • Lassen, S.F., Breinholt, J., Østergaard, P.R., Brugger, R., Bischoff, A., Wyss, M. and Fuglsang, C.C. (2001). Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp. and Trametes pubescens. Appl. Environ. Microbiol. 67, 4701–4707.

    PubMed  CAS  Google Scholar 

  • Lehmann, M., Kostrewa, D., Wyss, M., Brugger, R., D’Arcy, A., Pasamontes, L. and van Loon, A.P.G.M. (2000a). From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Prot. Eng. 13, 49–57.

    CAS  Google Scholar 

  • Lehmann, M., Lopez-Ulibarri, R., Loch, C., Viarouge, C., Wyss, M. and van Loon, A.P.G.M. (2000b). Exchanging the active site between phytases for altering the functional properties of the enzyme. Prot. Sci. 9, 1866–1872.

    CAS  Google Scholar 

  • Lei, X.G., Ku, P.K., Miller, E.R., Yokoyama, M.T. and Ullrey, D.E. (1993a). Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs. J. Anim. Sci. 71, 3368–3375.

    CAS  Google Scholar 

  • Lei, X.G., Ku, P.K., Miller, E.R., Ullrey, D.E. and Yokoyama, M.T. (1993b). Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123, 1117–1123.

    CAS  Google Scholar 

  • Lei, X.G., Ku, P.K., Miller, E.R., Yokoyama, M.T. and Ullrey, D.E. (1994). Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J. Anim. Sci. 72, 139–143.

    PubMed  CAS  Google Scholar 

  • Lim, D., Golovan, S., Forsberg, C.W. and Jia, Z. (2000) Crystal structure of Escherichia coli phytase and its complex with phytate. Nature Struct. Biol. 7, 108–113.

    PubMed  CAS  Google Scholar 

  • Liu, Q., Huang, Q., Lei, X.G. and Hao, Q. (2004) Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics. Structure 12, 1578–1583.

    Google Scholar 

  • Lott, J.N.A., Ockenden, I., Raboy, V. and Batten, G.D. (2000). Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci. Res. 10, 11–33.

    CAS  Google Scholar 

  • Lucca, P., Hurrell, R. and Potrykus, I. (2001). Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102, 392–397.

    CAS  Google Scholar 

  • Macbeth, M.R., Schubert, H.L., VanDemark, A.P., Lingam, A.T., Hill, C.P. and Bass, B.L. (2005). Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534–1539.

    PubMed  ADS  CAS  Google Scholar 

  • Madhavan Nampoothiri, K., Jino Tomes, G., Roopesh, K., Szakacs, G., Nagy, V., Soccol, C.R. and Pandey, A. (2004). Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Appl. Biochem. Biotechnol. 118, 205–214.

    PubMed  Google Scholar 

  • Maenz, D.D. (2001). Enzymatic characteristics of phytases as they relate to their use in animal feed. In Enzymes in farm animal nutrition. Eds. Bedford, M.R. and Partridge, G.G. CABI Publishing, Wallington, UK. pp. 61–84.

    Google Scholar 

  • Maenz, D.D. and Classen, H.L. (1998). Phytase activity in the small intestinal brush border membrane of the chicken. Poult. Sci. 77, 557–563.

    PubMed  CAS  Google Scholar 

  • Maheswari, M.U. and Chandra, T.S. (2000). Production and potential application of a xylanase from a new strain of Streptomyces cupidosporus. World. J. Microbiol. Biotechnol. 16, 257–263.

    CAS  Google Scholar 

  • Mak, W.C., Ng, Y.M., Chan, C., Kwong, W.K. and Renneberg, R. (2004). Novel biosensors for quantitative phytic acid and phytase measurement. Biosens. Bioelect. 19, 1029–1035.

    CAS  Google Scholar 

  • Maklinder, I.M., Larsson, M., Fredlund, K. and Sandberg, A.S. (1995). Degradation of phytate by using varied sources of phytases in an oat-based nutrient solution fermented by Lactobacillus plantarum strain 299 V. Food Microbiol. 12, 487–495.

    Google Scholar 

  • Martin, J.A., Murphy, R.A. and Power, R.F.G. (2003). Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori. J. Ind. Microbiol. Biotechnol. 30, 568–576.

    PubMed  CAS  Google Scholar 

  • Mayer, A.F., Hellmuth, K., Schlieker, H., Lopez-Ulibarri, R., Oertel, S., Dahlems, U., Strasser, A.W.M. and van Loon, A.P.G.M. (1999). An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 63, 373–381.

    PubMed  CAS  Google Scholar 

  • Miksch, G., Kleist, S., Friehs, K. and Flaschel, E. (2002). Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl. Microbiol. Biotechnol. 59, 685–694.

    PubMed  CAS  Google Scholar 

  • Mitchell, D.B., Vogel, K., Weimann, B.J., Pasamontes, L. and van Loon, A.P.G.M. (1997). The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiol. 143, 245–252.

    CAS  Google Scholar 

  • Mullaney, E.J., Daly, C.B., Ehrlich, K.C. and Ullah, A.H.J. (1995) The Aspergillus niger (ficuum) aphA gene encodes a pH 6.0-optimum acid phosphatase. Gene 162, 117–121.

    PubMed  CAS  Google Scholar 

  • Mullaney, E.J., Daly, C.B., Kim, T., Porres, J.M., Lei, X.G., Sethumadhavan, K. and Ullah, A.H.J. (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem. Biophys. Res. Commun. 297, 1016–1020.

    PubMed  CAS  Google Scholar 

  • Mullaney, E.J., Daly, C.B. and Ullah, A.H.J. (2000) Advances in phytase research. Adv. Appl. Microbiol. 47, 157–199.

    PubMed  CAS  Google Scholar 

  • Mullaney, E.J. and Ullah, A.H.J. (1998) Conservation of the active site motif in Aspergillus niger (ficuum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase. Biochem. Biophys. Res. Commun. 243, 471–473.

    PubMed  CAS  Google Scholar 

  • Mullaney, E.J. and Ullah, A.H.J. (2003) The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312, 179–184.

    PubMed  CAS  Google Scholar 

  • Mullaney, E.J. and Ullah, A.H.J. (2005) Conservation of cysteine residues in fungal histidine acid phytases. Biochem. Biophys. Res. Commun 328, 404–408.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., Fukuhara, H. and Sano, K. (2000). Secreted phytase activities of yeasts. Biosci. Biotechnol. Biochem. 64, 841–844.

    PubMed  CAS  Google Scholar 

  • Oh, B.C., Chang, B.S., Park, K.H., Ha, N.C., Kim, H.K., Oh, B.H. and Oh, T.K. (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloloquefaciens DS11. Biochem. 40, 9669–9676.

    CAS  Google Scholar 

  • Oh, B.C., Choi, W.C., Park, S., Kim, Y.O. and Oh, T.K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phosphatase. Appl. Microb. Biotechnol. 63, 362–372.

    CAS  Google Scholar 

  • Olczak, M., Morawiecha, B. and Watorek, W. (2003) Plant purple acid phosphatases- genes, structures and biological function. Acta Biochimica Polonica. 50, 1245–1256.

    PubMed  CAS  Google Scholar 

  • Oltmans, S.E., Fehr, W.R., Welke, G.A., Raboy, V. and Peterson, K.L. (2005). Agronomic and seed traits of soybean lines with low-phytate phosphorus. Crop. Sci. 45, 593–598.

    Article  CAS  Google Scholar 

  • Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D.B. and van Loon, A.P.G.M. (1997b). Cloning of the phytase from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochim. Biophys. Acta. 1353, 217–223.

    CAS  Google Scholar 

  • Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. and van Loon, A.P.G.M. (1997a). Gene cloning and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63, 1696–1700.

    CAS  Google Scholar 

  • Pen, J., Verwoerd, T.C., Vanparidon, P.A., Beudeker, R.F., Vandenelzen, P.J.M., Geerse, K., Vanderklis, J.D., Versteegh, H.A.J., Vanooyen, A.J.J. and Hoekema, A. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio-Technology. 11, 811–814.

    CAS  Google Scholar 

  • Phillippy, B.Q. (1999). Susceptibility of wheat and Aspergillus niger phytases to inactivation by gastrointestinal enzymes. J. Agric. Food Chem. 47, 1385–1388.

    PubMed  CAS  Google Scholar 

  • Phillippy, B.Q. (2002). Stability of plant and microbial phytases. In Food Phytates. Eds. Reddy, N.R. and Sathe, S.K. CRC Press, Boca Raton, FL, USA. pp. 107–126.

    Google Scholar 

  • Phillippy, B.Q. and Wyatt, C.J. (2001). Degradation of phytate in foods by phytases in fruits and vegetable extracts. J. Food Sci. 66, 535–539.

    CAS  Google Scholar 

  • Pilu, R., Panzeri, D., Gavazzi, G., Rasmussen, S.K., Consonni, G. and Nielsen, E. (2003). Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor. Appl. Genet. 107, 980–987.

    PubMed  CAS  Google Scholar 

  • Porres, J.M., Aranda, P., Lòpez-Jurado, M. and Urbano, G. (2003). Effect of natural and controlled fermentation on chemical composition and nutrient dialyzability from beans (Phaseolus vulgaris). J. Agric. Food Chem. 51, 5144–5149.

    PubMed  CAS  Google Scholar 

  • Porres, J.M., Aranda, P., Lòpez-Jurado, M. and Urbano, G. (2005). Nutritional potential of raw and free α-galactosides lupin (Lupinus albus Var. multolupa) seed flours. Effect of phytase treatment on nitrogen and mineral dialyzability. J. Agric. Food Chem. 53, 3088–3094.

    PubMed  CAS  Google Scholar 

  • Porres, J.M., Etcheverry, P., Miller, D.D. and Lei, X.G. (2001). Phytase and citric acid supplementation in whole-wheat bread improves phytate-phosphorus release and iron dialyzability. J. Food Sci. 66, 614–619.

    CAS  Google Scholar 

  • Quan, C.S., Fan, S.D. and Ohta, Y. (2003). Immobilization of Candida krusei cells producing phytase in alginate cell beads: an application of the preparation of myo-inositol phosphates. Appl. Microbiol. Biotechnol. 62, 41–47.

    PubMed  CAS  Google Scholar 

  • Quan, C.S., Fan, S.D., Zhang, L.H., Wang, Y.J. and Ohta, Y. (2002). Purification and properties of a phytase from Candida krusei WZ-001. J. Biosci. Bioeng. 94, 419–425.

    PubMed  CAS  Google Scholar 

  • Quan, C.S., Tian, W.J., Fan, S.D. and Kikuchi, Y. (2004). Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J. Biosci. Bioeng. 94, 260–266.

    Google Scholar 

  • Ravindran, V.B.W.K.E. (1995). Phytates: Occurrence, bioavailibility and implications in poultry nutrition. Poult. Avian. Biol. Rev. 6, 125–143.

    Google Scholar 

  • Rodriguez, E., Porres, J.M., Han, Y. and Lei, X.G. (1999a). Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365, 262–267.

    CAS  Google Scholar 

  • Rodriguez, E., Han, Y.M. and Lei, X.G. (1999b). Cloning, sequencing and expression of an Escherichia coli acid phosphatase/phytase gene (AppA2) isolated from pig colon. Biochem. Biophys. Res. Commun. 257, 117–123.

    CAS  Google Scholar 

  • Rodriguez, E., Mullaney, E.J. and Lei, X.G. (2000a). Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem. Biophys. Res. Commun. 268, 373–378.

    CAS  Google Scholar 

  • Rodriguez, E., Wood, Z.A., Karplus, P.A. and Lei, X.G. (2000b). Site-directed mutagenesis inproves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382, 105–112.

    CAS  Google Scholar 

  • Sabu, A., Sarita, S., Pandey, A., Bogar, B., Szakacs, G. and Soccol, C.R. (2002). Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl. Biochem. Biotechnol. 102–103, 251–260.

    PubMed  Google Scholar 

  • Saito, T., Kohno, M., Tsumura, K., Kugimiya, W. and Kito, M. (2001). Novel method using phytase for separating soybean β-conglycinin and glycinin. Biosci. Biotechnol. Biochem. 65, 884–887.

    PubMed  CAS  Google Scholar 

  • Sajidan, A., Farouk, A., Greiner, R., Jungblut, P., Müller, E.C. and Borriss, R. (2004). Molecular and physiological characterization of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl. Microbiol. Biotechnol. 65, 110–118.

    PubMed  CAS  Google Scholar 

  • Sandberg, A. and Andlid, T. (2002). Phytogenic and microbial phytases in human nutrition. Int. J. Food Sci. Tech. 37, 823–833.

    CAS  Google Scholar 

  • Sano, K., Fukuhara, H. and Nakamura, Y. (1999). Phytase of the yeast Arxula adenivorans. Biotechnol. Lett. 21, 33–38.

    CAS  Google Scholar 

  • Schenk, G., Guddat, L.W., Ge, Y., Carrington, L.E., Hume, D.A., Hamilton, J. and de Jersey, J. (2000) Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 250, 117–125.

    PubMed  CAS  Google Scholar 

  • Schoner, F.J., Hoppe, P.P. and Schwarz, G. (1991). Comparative effects of microbial phytase and inorganic phosphorus on performance and on retentions of phosphorus, calcium and crude ash in broilers. J. Anim. Physiol. Anim. Nutr.-Zeitschrift fur Tierphysiologie Tierernahrung und Futtermittelkunde. 66, 248–255.

    Google Scholar 

  • Scott, J.J. (1991). Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiol. 95, 1298–1302.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.J. and Loewus, F.A. (1986) A calcium-activated phytase from pollen of Lilium longiflorum. Plant Physiol. 82, 333–335.

    PubMed  CAS  Google Scholar 

  • Segueilha, L., Lambrechts, C., Boze, H., Moulin, G. and Galzy, P. (1992). Purification and properties of the phytase from Schwanniomyces castellii. J. Ferment. Bioeng. 74, 7–11.

    CAS  Google Scholar 

  • Shin, S., Ha, N.C., Oh, B.C., Oh, T.K. and Oh, B.H. (2001). Enzyme mechanism and catalytic property of β propeller phytase. Structure 9, 851–858.

    PubMed  CAS  Google Scholar 

  • Simon, O. and Igbasan, F. (2002). In vitro properties of phytases from various microbial origins. Int. J. Food Sci. Technol. 37, 813–822.

    CAS  Google Scholar 

  • Skoglund, E., Larsen, T. and Sandberg, A.S. (1997). Comparison between steeping and pelleting a mixed diet at different calcium levels on phytate degradation in pigs. Can. J. Anim. Sci. 77, 471–477.

    Article  Google Scholar 

  • Stahl, C.H., Wilson, D.B. and Lei, X.G. (2003). Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol. Lett. 25, 827–831.

    PubMed  CAS  Google Scholar 

  • Stevenson-Paulik, J. Bastidas, R.J., Chiou, S.T., Frye, R.A. and York, J.D. (2005). Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl. Acad. Sci. USA. 102, 12612–12617.

    PubMed  ADS  CAS  Google Scholar 

  • Stöckmann, C., Losen, M., Dahlems, U., Knocke, C., Gellisen, G. and Buchs, J. (2003). Effect of oxygen supply on passaging, stabilising, and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS. Yeast. Res. 4, 195–205.

    PubMed  Google Scholar 

  • Tomschy, A., Brugger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., Lassen, S.F., Burger, D., Kronenberger, A., van Loon, A.P.G.M., Pasamontes, L. and Wyss, M. (2002). Engineering of phytase for improved activity at low pH. Appl. Environ. Microbiol. 68, 1907–1913.

    PubMed  CAS  Google Scholar 

  • Tomschy, A., Tessier, M., Wyss, M., Brugger, R., Broger, C., Schnoebelen, L., van Loon, A.P.G.M. and Pasamontes, L. (2000). Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Prot. Sci. 9, 1304–1311.

    CAS  Google Scholar 

  • Türk, M., Sandberg, A.S., Carlsson, N. and Andlid, T. (2000). Inositol hexaphosphate hydrolysis from baker’s yeast. Capacity, kinetics, and degradation products. J. Agric. Food Chem. 48, 100–104.

    PubMed  Google Scholar 

  • Ullah, A.H.J. and Cummins, B.J. (1987) Purification, N-terminal amino acid sequence and characterization of pH 2.5 optimum acid phosphatase (E.C.3.1.3.2) from Aspergillus ficuum. Prep. Biochem. 17, 397–422.

    PubMed  CAS  Google Scholar 

  • Ullah, A.H.J. and Cummins, B.J. (1988) Aspergillus ficuum extracellular pH 6.0 optimum acid phosphatase: purification, N-terminal amino acid sequence, and biochemical characterization. Prep. Biochem. 18, 37–65.

    PubMed  CAS  Google Scholar 

  • Ullah, A.H.J. and Dischinger Jr., H.C. (1993) Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. Biochem. Biophys. Res. Commun. 92, 747–753.

    Google Scholar 

  • Van der Kaay, J. and Van Haastert, P.J.M. (1995). Stereospecificity of inositol hexakisphosphate dephosphorylation by Paramecium phytase. Biochem. J. 312, 907–910.

    PubMed  Google Scholar 

  • Van Etten, R.L., Davidson, R., Stevis, P.E., MacArthur, H. and Moore, D.L. (1991) Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J. Biol. Chem. 266, 2313–2319.

    PubMed  Google Scholar 

  • Vieira, E.C. and Nogueira, A.R.A. (2004). Orthophosphate, phytate, and total phosphorus determination in cereals by flow injection analysis. J. Agric. Food Chem. 52, 1800–1803.

    PubMed  CAS  Google Scholar 

  • Viveros, A., Centeno, C., Brenes, A., Canales, R. and Lozano, A. (2000). Phytase and acid phosphatase activities in plant feedstuffs. J. Agric. Food Chem. 48, 4009–4013.

    PubMed  CAS  Google Scholar 

  • Vohra, A. and Satyanarayana, T. (2001). Phytase production by the yeast, Pichia anomala. Biotechnol. Lett. 23, 551–554.

    CAS  Google Scholar 

  • Wang, X.Y., Meang, F.G. and Zhou, H.M. (2004) The role of disulfide bonds in the conformational stability and catalytic activity of phytase. Biochem. Cell Biol. 82, 329–334.

    PubMed  CAS  Google Scholar 

  • Wise, A. and Gilburt, D.J. (1982). Phytate hydrolysis in germfree and conventional rats. Appl. Environ. Microbiol. 43, 753–756.

    PubMed  CAS  Google Scholar 

  • Wodzinski, R.J. and Ullah, A.H.J. (1996) Phytase. Adv. Appl. Microbiol. 42, 263–302.

    Article  PubMed  CAS  Google Scholar 

  • Wyss, M., Brugger, R., Kronenberger, A., Rémy, R., Fimbel, R., Oesterhelt, G., Lehmann, M. and van Loon, A.P.G.M. (1999a). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): Catalytic properties. Appl. Environ. Microbiol. 65, 367–373.

    CAS  Google Scholar 

  • Wyss, M., Pasamontes, L., Friedlein, A., Rémy, R., Tessier, M., Kronenberger, A., Middendorf, A., Lehmann, A., Scnoebelen, L., Röthlisberger, U., Kusznir, E., Wahl, G., Müller, F., Lahm, H.W., Vogel, K. and van Loon, A.P.G.M. (1999b) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65, 359–366.

    CAS  Google Scholar 

  • Wyss, M., Pasamontes, L., Rémy, R., Kohler, J., Kusznir, E., Gadient, M., Müller, F. and van Loon, A.P.G.M. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64, 4446–4451.

    PubMed  CAS  Google Scholar 

  • Yanke, L.J., Bae, H.D., Selinger, L.B. and Cheng, K.J. (1998). Phytase activity of anaerobic ruminal bacteria. Microbiol. 144, 1565–1573.

    CAS  Google Scholar 

  • Yanke, L.J., Selinger, L.B. and Cheng, K.J. (1999). Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett. Appl. Microbiol. 29, 20–25.

    CAS  Google Scholar 

  • Yi, Z., Kornegay, E.T., Ravindran, V. and Denbow, D.M. (1996). Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poult. Sci. 75, 240–249.

    PubMed  CAS  Google Scholar 

  • Yin, C., Zhu, Z.Z., Lin, X.A., Yi, Y.Z., Zhang, Z.F. and Shen G.F. (2005). Overexpression and characterization of appA phytase expressed by recombinant baculovirus-infected silkworm. J. Microbiol. Biotechnol. 15, 466–471.

    Google Scholar 

  • Zhang, Z.B., Kornegay, E.T., Radcliffe, J.S., Denbow, D.M., Veit, H.P. and Larsen, C.T. (2000a). Comparison of genetically engineered microbial and plant phytase for young broilers. Poult. Sci. 79, 709–717.

    CAS  Google Scholar 

  • Zhang, Z.B., Kornegay, E.T., Radcliffe, J.S., Wilson, J.H. and Veit, H.P. (2000b). Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J. Anim. Sci. 78, 2868–2878.

    CAS  Google Scholar 

  • Zinin, N.V., Serkina, A.V., Gelfand, M.S., Shevelev, A.B. and Sinepky, S.P. (2004). Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS. Microbiol. Lett. 236, 283–290.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lei, X.G., Porres, J.M., Mullaney, E.J., Brinch-Pedersen, H. (2007). Phytase: Source, Structure and Application. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_29

Download citation

Publish with us

Policies and ethics