Skip to main content

High Redox Potential Peroxidases

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev. Biotechnol. 24, 1–58.

    Article  PubMed  CAS  Google Scholar 

  • Banci, L. (1997). Structural properties of peroxidases. J. Biotechnol. 53, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Banci, L., Camarero, S., Martìnez, A.T., Martìnez, M.J., Pérez-Boada, M., Pierattelli, R. and Ruiz-Dueñas, F.J. (2003). NMR study of Mn(II) binding by the new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J. Biol. Inorg. Chem. 8, 751–760.

    Article  PubMed  CAS  Google Scholar 

  • Blodig, W., Doyle, W.A., Smith, A.T., Winterhalter, K., Choinowski, T.H. and Piontek, K. (1998). Autocatalytic formation of hydroxy group at Cβ of Trp171 in lignin peroxidase. Biochemistry 37, 8832–8838.

    Article  PubMed  CAS  Google Scholar 

  • Blodig, W., Smith, A.T., Doyle, W.A. and Piontek, K. (2001). Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J. Mol. Biol. 305, 851–861.

    Article  PubMed  CAS  Google Scholar 

  • Blodig, W., Smith, A.T., Winterhalter, K. and Piontek, K. (1999). Evidence from spin-trapping for a transient radical on tryptophan residue 171 of lignin peroxidase. Arch. Biochem. Biophys. 370, 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Boerjan, W., Ralph, J. and Baucher, M. (2003). Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546.

    Article  PubMed  CAS  Google Scholar 

  • Bourbonnais, R. and Paice, M.G. (1988). Veratryl alcohol oxidases from the lignin degrading basidiomycete Pleurotus sajor-caju. Biochem. J. 255, 445–450.

    PubMed  CAS  Google Scholar 

  • Bourbonnais, R. and Paice, M.G. (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Brock, B.J., Rieble, S. and Gold, M.H. (1995). Purification and characterization of a 1,4-benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61, 3076–3081.

    PubMed  CAS  Google Scholar 

  • Camarero, S., Ibarra, D., Martìnez, M.J. and Martìnez, A.T. (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol. 71, 1775–1784.

    Article  PubMed  CAS  Google Scholar 

  • Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martìnez, M.J. and Martìnez, A.T. (1999). Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J. Biol. Chem. 274, 10324–10330.

    Article  PubMed  CAS  Google Scholar 

  • Celik, A., Cullis, P.M., Sutcliffe, M.J., Sangar, R. and Raven, E.L. (2001). Engineering the active site of ascorbate peroxidase. Eur. J. Biochem. 268, 78–85.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, J.R., Lamsa, M.H., Schneider, P., Vind, J., Svendsen, A., Jones, A. and Pedersen, A.H. (1999). Directed evolution of a fungal peroxidase. Nature Biotechnol. 17, 379–384.

    Article  CAS  Google Scholar 

  • Choinowski, T., Blodig, W., Winterhalter, K. and Piontek, K. (1999). The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxyl group on the Cβ of tryptophan 171, A novel radical site formed during redox cycle. J. Mol. Biol. 286, 809–827.

    Article  PubMed  CAS  Google Scholar 

  • Conesa, A., Jeenes, D., Archer, D.B., vandenHondel, C.A.M.J. and Punt, P.J. (2002). Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl. Environ. Microbiol. 68, 846–851.

    Article  PubMed  CAS  Google Scholar 

  • Conesa, A., van den Hondel, C.A.M.J.J. and Punt, P.J. (2000). Studies on the production of fungal peroxidases in Aspergillus niger. Appl. Environ. Microbiol. 66, 3016–3023.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, W.A., Blodig, W., Veitch, N.C., Piontek, K. and Smith, A.T. (1998). Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37, 15097–15105.

    Article  PubMed  CAS  Google Scholar 

  • Dunford, H.B. (1999). Heme peroxidases. Wiley-VCH, New York.

    Google Scholar 

  • Evans, C.S., Dutton, M.V., Guillén, F. and Veness, R.G. (1994). Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol. Rev. 13, 235–240.

    Article  CAS  Google Scholar 

  • Feng, M.L., Tachikawa, H., Wang, X.T., Pfister, T.D., Gengenbach, A.J. and Lu, Y. (2003). Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. J. Biol. Inorg. Chem. 8, 699–706.

    Article  PubMed  CAS  Google Scholar 

  • Fengel, D. and Wegener, G. (1984). Wood: Chemistry, ultrastructure, reactions. De Gruyter, Berlin.

    Google Scholar 

  • Glenn, J.K., Akileswaran, L. and Gold, M.H. (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251, 688–696.

    Article  PubMed  CAS  Google Scholar 

  • Glenn, J.K., Morgan, M.A., Mayfield, M.B., Kuwahara, M. and Gold, M.H. (1983). An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 114, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Gold, M.H., Youngs, H.L. and Gelpke, M.D. (2000). Manganese peroxidase. Met. Ions Biol. Syst. 37, 559–586.

    PubMed  CAS  Google Scholar 

  • Gu, L., Lajoie, C. and Kelly, C. (2003). Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris. Biotechnol. Progr. 19, 1403–1409.

    Article  CAS  Google Scholar 

  • Guillén, F., Gòmez-Toribio, V., Martìnez, M.J. and Martìnez, A.T. (2000). Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch. Biochem. Biophys. 383, 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Guillén, F., Martìnez, A.T. and Martìnez, M.J. (1992). Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur. J. Biochem. 209, 603–611.

    Article  PubMed  Google Scholar 

  • Guillén, F., Martìnez, A.T., Martìnez, M.J. and Evans, C.S. (1994). Hydrogen peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Appl. Microbiol. Biotechnol. 41, 465–470.

    Google Scholar 

  • Gutiérrez, A., Caramelo, L., Prieto, A., Martìnez, M.J. and Martìnez, A.T. (1994). Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl. Environ. Microbiol. 60, 1783–1788.

    PubMed  Google Scholar 

  • Hammel, K.E., Kapich, A.N., Jensen, K.A. Jr. and Ryan, Z.C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol 30, 445–453.

    Article  CAS  Google Scholar 

  • Harris, R.Z., Wariishi, H., Gold, M.H. and Ortiz de Montellano, P.R. (1991). The catalytic site of manganese peroxidase. Regiospecific addition of sodium azide and alkylhydrazines to the heme group. J. Biol. Chem. 266, 8751–8758.

    PubMed  CAS  Google Scholar 

  • Heinfling, A., Ruiz-Dueñas, F.J., Martìnez, M.J., Bergbauer, M., Szewzyk, U. and Martìnez, A.T. (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 428, 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen, A., Smith, A.T. and Gajhede, M. (1999). The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. J. Biol. Chem. 274, 35005–35011.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, T. (1997). Biochemistry and Molecular Biology of Wood. Springer Verlag, London.

    Google Scholar 

  • Ho, P.S., Hoffman, B.M., Kang, C.H. and Margoliash, E. (1983). Control of the transfer of oxidizing equivalents between heme iron and free radical site in yeast cytochrome c peroxidase. J. Biol. Chem. 258, 4356–4363.

    PubMed  CAS  Google Scholar 

  • Jensen, K.A. Jr., Bao, W., Kawai, S., Srebotnik, E. and Hammel, K.E. (1996). Manganese-dependent cleavage of non-phenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl. Environ. Microbiol. 62, 3679–3686.

    PubMed  CAS  Google Scholar 

  • Käärik, A. (1965). The identification of the mycelia of wood-decay fungi by their oxidation reactions with phenolic compounds. Stud. For. Suec. 31, 3–81.

    Google Scholar 

  • Kantelinen, A., Viikari, L., Ranua, M., Sundquist, J. and Linko, M. (1990). Enzymatic bleaching. Kemia-Kemi 17, 962.

    Google Scholar 

  • Kersten, P.J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proc. Natl. Acad. Sci. USA 87, 2936–2940.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kersten, P.J., Tien, M., Kalyanaraman, B. and Kirk, T.K. (1985). The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J. Biol. Chem. 260, 2609–2612.

    PubMed  CAS  Google Scholar 

  • Kirk, T.K. and Cullen, D. (1998). Enzymology and molecular genetics of wood degradation by white-rot fungi, p. 273–308. In R.A. Young and M. Akhtar (eds.), Environmentally friendly technologies for the pulp and paper industry. TAPPI Press, Atlanta.

    Google Scholar 

  • Kirk, T.K. and Farrell, R.L. (1987). Enzymatic ‘‘combustion’’: The microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–505.

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara, M., Glenn, J.K., Morgan, M.A. and Gold, M.H. (1984). Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 169, 247–250.

    Article  CAS  Google Scholar 

  • Lee, K.H., Wi, S.G., Singh, A.P. and Kim, Y.S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. J. Wood Sci. 50, 281–284.

    Article  Google Scholar 

  • Levy, I., Ward, G., Hadar, Y., Shoseyov, O. and Dosoretz, C.G. (2003). Oxidation of 4-bromophenol by the recombinant fused protein cellulose-binding domain-horseradish peroxidase immobilized on cellulose. Biotechnol. Bioeng. 82, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Li, K.C., Horanyi, P.S., Collins, R., Phillips, R.S. and Eriksson, K.E.L. (2001). Investigation of the role of 3-hydroxyanthranilic acid in the degradation of lignin by white-rot fungus Pycnoporus cinnabarinus. Enzyme Microb. Technol. 28, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Lù-Chau, T.A., Ruiz-Dueñas, F.J., Camarero, S., Feijoo, G., Martìnez, M.J., Lema, J.M. and Martìnez, A.T. (2004). Effect of pH on the stability of Pleurotus eryngii versatile peroxidase during heterologous production in Emericella nidulans. Bioprocess. Biosyst. Eng 26, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Martìnez, A.T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30, 425–444.

    Article  Google Scholar 

  • Martìnez, A.T., Speranza, M., Ruiz-Dueñas, F.J., Ferreira, P., Camarero, S., Guillén, F., Martìnez, M.J., Gutiérrez, A. and del Rìo, J.C. (2005). Biodegradation of lignocellulosics: Microbiological, chemical and enzymatic aspects of fungal attack to lignin. Intern. Microbiol. 8, 195–204.

    Google Scholar 

  • Martìnez, M.J., Ruiz-Dueñas, F.J., Guillén, F. and Martìnez, A.T. (1996). Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237, 424–432.

    Article  PubMed  Google Scholar 

  • Mayer, A.M. and Staples, R.C. (2002). Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565.

    Article  PubMed  CAS  Google Scholar 

  • Mester, T., Ambert-Balay, K., Ciofi-Baffoni, S., Banci, L., Jones, A.D. and Tien, M. (2001). Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J. Biol. Chem. 276, 22985–22990.

    Article  PubMed  CAS  Google Scholar 

  • Mester, T. and Field, J.A. (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. Biol. Chem. 273, 15412–15417.

    Article  PubMed  CAS  Google Scholar 

  • Mester, T. and Tien, M. (2001). Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 284, 723–728.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki-Imamura, C., Oohira, K., Kitagawa, R., Nakano, H., Yamane, T. and Takahashi, H. (2003). Improvement of H2O2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase. Protein Eng. 16, 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Muheim, A., Waldner, R., Leisola, M.S.A. and Fiechter, A. (1990). An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb. Technol. 12, 204–209.

    Article  CAS  Google Scholar 

  • Paice, M.G., Bourbonnais, R., Reid, I.D., Archibald, F.S. and Jurasek, L. (1995). Oxidative bleaching enzymes: A review. J. Pulp Paper Sci. 21, J280-J284.

    CAS  Google Scholar 

  • Pérez-Boada, M., Ruiz-Dueñas, F.J., Pogni, R., Basosi, R., Choinowski, T., Martìnez, M.J., Piontek, K. and Martìnez, A.T. (2005). Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. J. Mol. Biol. 345, 385–402.

    Article  CAS  Google Scholar 

  • Piontek, K., Choinowski, T., Ruiz-Dueñas, F.J., Martìnez, M.J. and Martìnez, A.T. (2006). High-resolution crystal structure of versatile peroxidase oxidizing both Mn(II) and aromatic substrates. J. Mol. Biol. (in preparation).

    Google Scholar 

  • Piontek, K., Glumoff, T. and Winterhalter, K. (1993). Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 Å resolution. FEBS Lett. 315, 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Pogni, R., Baratto, M.C., Giansanti, S., Teutloff, C., Verdin, J., Valderrama, B., Lendzian, F., Lubitz, W., Vazquez-Duhalt, R. and Basosi, R. (2005). Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44, 4267–4274.

    Article  PubMed  CAS  Google Scholar 

  • Pogni, R., Baratto, M.C., Teutloff, C., Giansanti, S., Ruiz-Dueñas, F.J., Choinowski, T., Piontek, K., Martìnez, A.T., Lendzian, F. and Basosi, R. (2006). A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multi-frequency EPR and DFT study. J. Biol. Chem. Jan 27 (Epub ahead of print).

    Google Scholar 

  • Poulos, T.L. (1993). Peroxidases. Curr. Opin. Biotechnol. 4, 484–489.

    Article  PubMed  CAS  Google Scholar 

  • Poulos, T.L., Edwards, S.L., Wariishi, H. and Gold, M.H. (1993). Crystallographic refinement of lignin peroxidase at 2 Å. J. Biol. Chem. 268, 4429–4440.

    PubMed  CAS  Google Scholar 

  • Reading, N.S. and Aust, S.D. (2000). Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability. Biotechnol. Progr. 16, 326–333.

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas, F.J., Martìnez, M.J. and Martìnez, A.T. (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31, 223–236.

    Article  PubMed  Google Scholar 

  • Schoemaker, H.E. (1990). On the chemistry of lignin degradation. Recueil des Travaux Chimiques des Pays-Bas 109, 255–272.

    Article  CAS  Google Scholar 

  • Sigoillot, C., Camarero, S., Vidal, T., Record, E., Asther, M., Pérez-Boada, M., Martìnez, M.J., Sigoillot, J.-C., Asther, M., Colom, J. and Martìnez, A.T. (2005). Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115, 333–343.

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy, M., Kishi, K., Gold, M.H. and Poulos, T.L. (1994). The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J. Biol. Chem. 269, 32759–32767.

    PubMed  CAS  Google Scholar 

  • Sundaramoorthy, M., Kishi, K., Gold, M.H. and Poulos, T.L. (1997). Crystal structures of substrate binding site mutants of manganese peroxidase. J. Biol. Chem. 272, 17574–17580.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology 140, 19–26.

    Article  CAS  Google Scholar 

  • Tien, M. and Kirk, T.K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221, 661–663.

    Article  ADS  CAS  Google Scholar 

  • Timofeevski, S.L., Nie, G., Reading, N.S. and Aust, S.D. (1999). Engineering a functional hybrid of manganese peroxidase and lignin peroxidase. Plant Peroxidase Newsletter 13, 99–111.

    Google Scholar 

  • Tsukamoto, K., Itakura, H., Sato, K., Fukuyama, K., Miura, S., Takahashi, S., Ikezawa, H. and Hosoya, T. (1999). Binding of salicylhydroxamic acid and several aromatic donor molecules to Arthromyces ramosus peroxidase, investigated by X-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics and kinetics. Biochemistry 38, 12558–12568.

    Article  PubMed  CAS  Google Scholar 

  • Viikari, L., Kantelinen, A., Sundquist, J. and Linko, M. (1994). Xylanases in Bleaching – From an Idea to the Industry. FEMS Microbiol. Rev. 13, 335–350.

    Article  CAS  Google Scholar 

  • Wilcox, S.K., Putnam, C.D., Sastry, M., Blankenship, J., Chazin, W.J., McRee, D.E. and Goodin, D.B. (1998). Rational design of a functional metalloenzyme: Introduction of a site for manganese binding and oxidation into a heme peroxidase. Biochemistry 37, 16853–16862.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Martínez, Á.T. (2007). High Redox Potential Peroxidases. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_27

Download citation

Publish with us

Policies and ethics