Skip to main content

Hydrogen Peroxide Producing and Decomposing Enzymes: their Use in Biosensors and other Applications

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adànyi, N., Szabò, E.E. andVàradi, M. (1999) Multi-enzyme biosensors with amperometric detection of lactose in milk and dairy products. Z. Lebensm. Unters.-Forsch. A. 209, 220–226.

    Google Scholar 

  • Adànyi, N. andVàradi, M. (2004) Catalase-based thin-layer enzyme cell used in organic-phase FIA system for determination of moisture in oily foods. Eur. Food Res. Technol. 219, 432–437.

    Google Scholar 

  • Akertek, E. andTarhan, L. (1995) Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl. Biochem. Biotech. 50, 291–303.

    CAS  Google Scholar 

  • Alvarez-Icaza, M., Kalisz, H.M., Hecht, H.J., Aumann, K.D., Schomburg, D. andSchmid, R.D. (1995) The design of enzyme sensors based on the enzyme structure. Biosens. Bioelectron. 10, 735–742.

    PubMed  CAS  Google Scholar 

  • Amorim, A.M., Gasques, M.D.G., Andreaus, J. andScharf, M. (2002) The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. Anais Acad. Brasil. Ciéncias 74, 433–435.

    CAS  Google Scholar 

  • Baticz, O. andTömösközi, S. (2002) Determination of total cholesterol content in food by flow injection analysis with immobilized cholesterol oxidase enzyme reactor. Nahrung 46, 46–50.

    PubMed  CAS  Google Scholar 

  • Bossi, A., Castelletti, L., Piletsky, S.A. andRighetti, P.G. (2003) Towards the development of an integrated capillary electrophoresis optical biosensor. Electrophoresis 24, 3356–3363.

    PubMed  CAS  Google Scholar 

  • Bourdillon, C., Demaille, C., Moiroux, J. andSaveant, J.M. (1993) New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. J. Am. Chem. Soc. 115, 1–10.

    Google Scholar 

  • Bretting, H. andJacobs, G. (1987) The reactivity of galactose oxidase with snail galactans, galactosides and D-galactose-composed oligosaccharides. Biochim. Biophys. Acta. 913, 342–348.

    PubMed  CAS  Google Scholar 

  • Campanella, L., Persi, L. andTomassetti M. (2000) A new tool for superoxide and nitric oxide radicals determination using suitable enzymatic sensors. Sensor. Actuat. B-Chem. 68, 351–359.

    Google Scholar 

  • Campanella, L., Sammartino, M.P., Tomassetti, M. andZannella S., (2001) Hydroperoxide determination by a catalase OPEE: application to the study of extra virgin olive oil rancidification process. Sensor. Actuat. B-Chem. 76, 158–165.

    Google Scholar 

  • Castellari, M., Matricardi, L., Arfelli, G., Carpi, G. andGalassi, S. (2000) Effects of high hydrostatic pressure processing and of glucose oxidase-catalase addition on the color stability and sensorial score of grape juice. Food Sci.Technol. Int. 6, 17–23.

    CAS  Google Scholar 

  • Chan, T.W. andBruice, T.C. (1977) One and two electron transfer reactions of glucose oxidase. J. Am. Chem. Soc. 99, 2387–2389.

    PubMed  CAS  Google Scholar 

  • Cheetham, P.S., Dunnill, P. andLilly, M.D. (1982) The characterization and interconversion of three forms of cholesterol oxidase extracted from Nocardia rhodochrous. Biochem. J. 201, 515–521.

    PubMed  CAS  Google Scholar 

  • Chelikani, P., Fita, I. andLoewen, P.C. (2004) Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61, 192–208.

    PubMed  CAS  Google Scholar 

  • Collar, C., Andreu, P. andMartinez-Anaya, M.A. (1998) Interactive effects of flour, starter and enzyme on bread dough machinability. Z. Lebensm. Unters.-Forsch. A. 207, 133–139.

    CAS  Google Scholar 

  • Costa, S.A., Tzanov, T., Carneiro, F., Gübitz, G.M. andCavaco-Paulo, A. (2002) Recycling of textile bleaching effluents for dyeing using immobilized catalase. Biotechnol. Lett. 24, 173–176.

    CAS  Google Scholar 

  • Crueger, A. andCrueger, W. (1990) Glucose transforming enzyme. In: Microbial Enzymes and Biotechnology (Fogarty, W.M. andKelly, C.T. Eds.) Elsevier Applied Science, London, pp. 177–226.

    Google Scholar 

  • Dobbenie, D., Uyttendaele, M. andDebevere, J. (1995) Antibacterial activity of the glucose oxidase/glucose system in liquid whole egg. J. Food Protect. 58, 273–279.

    CAS  Google Scholar 

  • Dondero, M., Egaña, W., Tarky, W., Cifuentes, A. andTorres, J.A. (1993) Glucose oxidase/catalase improves preservation of shrimp (Heterocarpus reedi). J. Food Sci. 58, 774–779.

    CAS  Google Scholar 

  • Dunnewind, B., van Vliet, T. andOrsel, R. (2002) Effect of oxidative enzymes on bulk rheological properties of wheat flour doughs. J. Cereal Sci. 36, 357–366.

    CAS  Google Scholar 

  • Endo, H., Maita, M., Takikawa, M., Ren, H., Hayashi, T., Urano, N. andMitsubayashi, K. (2003) Enzyme sensor system for determination of total cholesterol in fish plasma. Fisheries Sci. 69, 1194–1199.

    CAS  Google Scholar 

  • Fei, J.J., Wu, K.B., Wang, F. andHu, S.S. (2005) Glucose nanosensors based on redox polymer/glucose oxidase modified carbon fiber nanoelectrodes. Talanta 65, 918–924.

    CAS  Google Scholar 

  • Fernanandez-Garayzabal, J.F., Delgado, C., Blanco, M.M., Suarez, G. andDominguez, L. (1996) Cholesterol oxidase from Rhodococcus equi is likely the major factor involved in the cooperative lytic process (CAMP reaction) with Listeria monocytogenes. Lett. Appl. Microbiol. 22, 249–252.

    PubMed  CAS  Google Scholar 

  • Florescu, M. andBrett C.M.A. (2005) Development and evaluation of electrochemical glucose enzyme biosensors based on carbon film electrodes. Talanta 65, 306–312.

    CAS  Google Scholar 

  • Forrow, N.J., Sanghera, G.S. andWalters, S.J. (2002) The influence of structure in the reaction of electrochemically generated ferrocenium derivatives with reduced glucose oxidase. Dalton Trans. 16, 3187–3194.

    Google Scholar 

  • Forrow, N.J. andWalters, S.J. (2004) Transition metal half-sandwich complexes as redox mediators to glucose oxidase. Biosens. Bioelectron. 19, 763–770.

    PubMed  CAS  Google Scholar 

  • Fruhwirth, G.O., Paar, A., Gudelj, M., Cavaco-Paulo, A., Robra, K.H. andGübitz, G.M. (2002) An immobilized catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Appl. Microbiol. Biotechnol. 60, 313–319.

    PubMed  CAS  Google Scholar 

  • Fuglsang, C.C., Johansen, C., Christgau, S. andAdler-Nissen, J. (1995) Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci. Tech. 6, 390–396.

    CAS  Google Scholar 

  • Fukuda, H., Kawakami, Y. andNakamura, S. (1973) A method to screen anticholesterol substances produced by microbes and a new cholesterol oxidase produced by Streptomyces violascens. Chem. Pharm. Bull. (Tokyo) 21, 2057–2060.

    CAS  Google Scholar 

  • Fusho, Y. andYajima, Y. (1995) Catalase and production process thereof. Patent No.: EP0663405.

    Google Scholar 

  • Fusho, Y. andYajima, Y. (1997) Catalase from Bacillus and process for producing the same. Patent No.: US5622849.

    Google Scholar 

  • Galante, Y.M. andFormantici, C. (2003) Enzyme applications in detergency and in manufacturing industries. Curr. Org. Chem. 7, 1399–1422.

    CAS  Google Scholar 

  • Gàspàr, S, Wang, X., Suzuki, H. andCsöregi, E. (2004) Amperometric biosensor-based flow-through microdetector for microdialysis applications. Anal. Chim. Acta 525, 75–82.

    Google Scholar 

  • Giordano, R.S., Bereman, R.D., Kosman, D.J. andEttinger, M.J. (1974) Stereoelectronic properties of metalloenzymes. II. Effects of ligand coordination on the electron spin resonance spectrum of galactose oxidase as a probe of structure and function. J. Am. Chem. Soc. 96, 1023–1026.

    PubMed  CAS  Google Scholar 

  • Gobi, K.V. andMizutani, F. (2001). Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol. Sensor. Actuat. B-Chem. 80, 272–277.

    Google Scholar 

  • Gomez, E., Martinez, A. andLaencina, J. (1995) Prevention of oxidative browning during wine storage. Food Res. Int. 28, 213–217.

    CAS  Google Scholar 

  • Goodhue, C.T. andRisley, H.A. (1978) Production of cholesterol oxidase by Nocardia cholesterolicum. Patent No: US3909359.

    Google Scholar 

  • Gouda, M.D., Kumar, M.A., Thakur, M.S. andKaranth, N.G. (2002). Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents. Biosens. Bioelectron. 17, 503–507.

    PubMed  CAS  Google Scholar 

  • Gouda, M.D., Singh, S.A., Rao, A.G., Thakur, M.S. andKaranth, N.G. (2003) Thermal inactivation of glucose oxidase. Mechanism and stabilization using additives. J. Biol. Chem. 278, 24324–24333.

    PubMed  CAS  Google Scholar 

  • Goudsmit, E.M., Matsuura, F. andBlake, D.A. (1984) Substrate specificity of D-galactose oxidase. Evidence for the oxidation of internally linked galactosyl residues of Helix pomatia galactogen. J. Biol. Chem. 259, 2875–2878.

    PubMed  CAS  Google Scholar 

  • Guo, M.L., Chen, J.H., Li, J., Nie, L.H. andYao, S.Z. (2004) Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis 16, 1992–1998.

    CAS  Google Scholar 

  • Guzman-Vàzquez de Prada, A., Pena, N., Parrado, C., Reviejo, A.J. andPingarròn, J.M. (2004) Amperometric multidetection with composite enzyme electrodes. Talanta 62, 896–903.

    Google Scholar 

  • Hall, G.F. andTurner, A.P.F. (1991) An organic phase enzyme electrode for cholesterol. Anal. Lett. 24, 1375–1388.

    CAS  Google Scholar 

  • Harwood, G.W.J. andPouton, C.W. (1996) Amperometric enzyme biosensors for metabolites the analysis of drugs and metabolites. Adv. Drug Deliver. Rev. 18, 163–191.

    CAS  Google Scholar 

  • Hasebe, Y. andUchiyama, S. (2000). Amperometric flow-type L-histidine sensor using an immobilized galactose oxidase reactor, based on a novel catalytic activity induced by exogenous histidine. Sensor. Actuat. B-Chem. 66, 12–15.

    Google Scholar 

  • Hilhorst, R., Dunnewind, B., Orsel, R., Stegeman, P., van Vliet, T., Gruppen, H. andSchols, H.A. (1999) Baking performance, rheology, and chemical composition of wheat dough and gluten affected by xylanase and oxidative enzymes. J. Food Sci. 64, 808–813.

    CAS  Google Scholar 

  • Hill, K.J., Kaszuba, M., Creeth, J.E. andJones, M.N. (1997) Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. Biochim. Biophys. Acta 1326, 37–46.

    PubMed  CAS  Google Scholar 

  • Horozova, E., Dimcheva, N. andJordanova Z. (2002) Study of catalase electrode for organic peroxidase assays. Bioelectrochemistry 58, 181–187.

    PubMed  CAS  Google Scholar 

  • Indrani, D., Prabhasankar, P., Rajiv, J. andRao, G.V. (2003) Scanning electron microscopy, rheological characteristics, and bread-baking performance of wheat-flour dough as affected by enzymes. J. Food Sci. 68, 2804–2809.

    CAS  Google Scholar 

  • Inouye, Y., Taguchi, K., Fuji, A., Ishimaru, K., Nakamura, S. andNomi, R. (1982) Chem. Pharm. Bull. (Tokyo) 30, 951–958.

    CAS  Google Scholar 

  • Isaksen, A. andAdler-Nissen, J. (1997) Antioxidative effect of glucose oxidase and catalase in mayonnaises of different oxidative susceptibility. I. Product trials. LWT-Food Sci. Technol. 30, 841–846.

    CAS  Google Scholar 

  • Ito, N., Phillips, S.E., Stevens, C., Ogel, Z.B., McPherson, M.J., Keen, J.N., Yadav, K.D. andKnowles, P.F. (1991) Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase. Nature 350, 87–90.

    PubMed  ADS  CAS  Google Scholar 

  • Jacquot, M. andPoncelet, D. (2003) Multienzymic system encapsulation: application to the lactoperoxidase system. J. Chem. Chem. Eng. Tech. 12, 581–584.

    Google Scholar 

  • Jafar, S.S., Hulton, H.O., Bimbo, A.P., Crowther, J.B. andBarlow, S.M. (1994) Stabilization by antioxidants of mayonnaise made from fish oil. J. Food Lipids 1, 295–311.

    CAS  Google Scholar 

  • Jawaheer, S., White, S.F, Rughooputh, S.D.D.V. andCullen D.C. (2003) Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality. Biosens. Bioelectron. 18, 1429–1437.

    PubMed  CAS  Google Scholar 

  • Johansen, C., Falholt, P. andGram, L. (1997) Enzymatic removal and disinfection of bacterial biofilms. Appl. Environ. Microbiol. 63, 3724–3728.

    PubMed  CAS  Google Scholar 

  • Jones, M.N., Hill, K.J., Kaszuba, M. andCreeth, J.E. (1998) Antibacterial reactive liposomes encapsulating coupled enzyme systems. Int. J. Pharm. 162, 107–117.

    CAS  Google Scholar 

  • Joo, H., Yoo, Y.J. andRyu, D.D.Y. (1996) A biosensor stabilized by polyethylene glycol for monitoring of hydrogen peroxide in organic solvent media. Enzyme Microb. Tech. 19, 50–56.

    CAS  Google Scholar 

  • Klibanov, A.M., Alberti, B.N. andMarletta, M.A. (1982) Stereospecific oxidation of aliphatic alcohols catalyzed by galactose oxidase. Biochem. Biophys. Res. Commun. 108, 804–808.

    Article  PubMed  CAS  Google Scholar 

  • Klotz, M.G. andKlassen, G.R. andLoewen, P.C. (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol. Biol. Evol. 14, 951–958.

    PubMed  CAS  Google Scholar 

  • Kona, R.P., Qureshi, N. andPai, J.S. (2001) Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresource Technol. 78, 123–126.

    CAS  Google Scholar 

  • Kotzian, P., Bràzdilovà, P., Kalcher, K. andVytras, K. (2005). Determination of hydrogen peroxide, glucose and hypoxanthine using (bio)sensors based on ruthenium-dioxide modified screen-printed electrodes. Anal. Lett. 38, 1099–1113.

    CAS  Google Scholar 

  • Kou, S., Tagoyama, Y., Yamazumi, T. andYamamoto, H. (1998) Catalase and its production. Patent No.: JP10257883.

    Google Scholar 

  • Kraulis, P.J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.

    Google Scholar 

  • Leiter, È., Marx, F., Pusztahelyi, T., Haas, H. andPòcsi, I. (2004) Penicillium chrysogenum glucose oxidase - a study on its antifungal effects. J. Appl. Microbiol. 97, 1201–1209.

    PubMed  CAS  Google Scholar 

  • Malherbe, D.F., du Toit, M., Cordero Otero, R.R., van Rensburg, P. andPretorius, I.S. (2003) Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl. Microbiol. Biot. 61, 502–511.

    CAS  Google Scholar 

  • Malhotra, B.D. andSinghal, R. (2003) Conducting polymer based biomolecular electronic devices Pramana. J. Phys. 61, 331–343.

    CAS  Google Scholar 

  • Malhotra, B.D., Singhal, R., Chaubey, A., Sharma, S.K. andKumar, A. (2005) Recent trends in biosensors. Curr. Appl. Phys. 5, 92–97.

    Google Scholar 

  • Marconi, E., Messia, M.C., Palleschi, G. andCubadda, R. (2004) Maltose biosensor for determining gelatinized starch in processed cereal foods. Cereal Chem. 81, 6–9.

    CAS  Google Scholar 

  • Martinez-Anaya, M.A. andJimenez, T. (1998) Physical properties of enzyme-supplemented doughs and relationship with bread quality parameters. Z. Lebensm. Unters.-Forsch. A. 206, 134–142.

    CAS  Google Scholar 

  • Massa, S., Petruccioli, M., Brocchi, G.F., Altieri, C., Sinigaglia, M. andSpano, G. (2001) Growth inhibition by glucose oxidase system of enterotoxic Escherichia coli and Salmonella derby: in vitro studies. World J. Microb. Biot. 17, 287–291.

    CAS  Google Scholar 

  • Matsui, I., Nakashima, K. andTaniguchi, T. (1982) Preparation of cholesterol oxidase. Patent No.: JP57122792.

    Google Scholar 

  • Matsunaga, I. andShiro, Y. (2004) Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Curr. Opin. Chem. Biol. 8, 127–32.

    PubMed  CAS  Google Scholar 

  • Medina, M. Vrielink, A. and Cammack, R. (1997) Electron spin echo envelope modulation studies of the semiquinone anion radical of cholesterol oxidase from Brevibacterium sterolicum. FEBS Lett. 400, 247–251.

    PubMed  CAS  Google Scholar 

  • Nakamatsu, T., Akamatsu. T., Miyajima, R. and Shiio, I. (1975) Microbial production of glucose oxidase. Agric. Biol. Chem. 39, 1803–1811.

    CAS  Google Scholar 

  • Navas, J., Gonzalez-Zorn, B., Ladron, N., Garrido, P. andVazquez-Boland, J.A. (2001) Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J. Bacteriol. 183, 4796–4805.

    PubMed  CAS  Google Scholar 

  • Ohlmeyer, D.W. (1957) Use of glucose oxidase to stabilize beer. Food Technol. October 503–507.

    Google Scholar 

  • Opwis, K., Knittel, D. andSchollmeyer, E. (2004) Immobilization of catalase on textile carrier materials. AATCC Rev. 4, 25–28.

    CAS  Google Scholar 

  • Ough, C.S. (1975) Further investigations with glucose oxidase-catalase systems for use with wine. Am. J. Enol. Viticult. 26, 30–36.

    CAS  Google Scholar 

  • Paar, A., Costa, S., Tzanov, T., Gudelj, M., Robra, K.H., Cavaco-Paulo, A. andGübitz, G.M. (2001) Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. J. Biotechnol. 89, 147–153.

    PubMed  CAS  Google Scholar 

  • Paar, A., Raninger, A., de Sousa, F., Beurer, I., Cavaco-Paulo, A. andGübitz, G.M. (2003) Production of catalase-peroxidase and continuous degradation of hydrogen peroxide by an immobilized alkalothermophilic Bacillus sp. Food Technol. Biotech. 41, 101–104.

    CAS  Google Scholar 

  • Parpinello, G.P., Chinnici, F., Versari, A. andRiponi, C. (2002) Preliminary study on glucose oxidase-catalase enzyme system to control the browning of apple and pear purées. LWT-Food Sci. Technol. 35, 239–243.

    CAS  Google Scholar 

  • Pazur, J.H. andKleppe, K. (1964) The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger. Biochemistry 3, 578–583.

    PubMed  CAS  Google Scholar 

  • Pena, N., Ruiz, G., Reviejo, A.J. andPingarron, J.M. (2001) Graphite-teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles. Application to food samples. Anal. Chem. 73, 1190–1195.

    PubMed  CAS  Google Scholar 

  • Petruccioli, M., Ceccarelli, M. andFederici, F. (1993) Screening of Penicillium species for the production of glucose oxidase. World J. Microb. Biot. 9, 77–79.

    CAS  Google Scholar 

  • Pickering, G.J., Heatherbell, D.A. andBarnes, M.F. (1998) Optimising glucose conversion in the production of reduced alcohol wine using glucose oxidase. Food Res. Int. 31, 685–692.

    CAS  Google Scholar 

  • Pickering, G.J., Heatherbell, D.A. andBarnes, M.F. (1999) The production of reduced-alcohol wine using glucose oxidase treated juice. Part I. Composition. Am. J. Enol. Viticult. 50, 291–298.

    CAS  Google Scholar 

  • Pickup, J.C., Hussain, F., Evans, N.D., Rolinski, O.J. andBirch D.J.S. (2005) Fluorescence-based glucose sensors. Biosens. Bioelectron. 20, 2555–2565.

    PubMed  CAS  Google Scholar 

  • Popper, L. andKnorr, D. (1997) Inactivation of yeast and filamentous fungi by the lactoperoxidase-hydrogen peroxide-thiocyanate system. Nahrung 41, 29–33.

    PubMed  CAS  Google Scholar 

  • Primo-Martin, C., Valera, R. andMartinez-Anaya, M.A. (2003) Effect of pentosanase and oxidases on the characteristics of doughs and the glutenin macropolymer (GMP). J. Agric. Food Chem. 51, 4673–4679.

    PubMed  CAS  Google Scholar 

  • Primo-Martin, C., Martinez-Anaya, M.A. andCollar, C. (2004) Composition of glutenin macropolymer: effect of flour quality and nonamylolytic enzyme addition. Eur. Food Res. Technol. 218, 428–436.

    CAS  Google Scholar 

  • Primo-Martin, C., Wang, M.W., Lichtendonk, W.J., Plijter, J.J. andHamer, R.J. (2005) An explanation for the combined effect of xylanase-glucose oxidase in dough systems. J. Sci. Food Agric. 85, 1186–1196.

    CAS  Google Scholar 

  • Ram, M.K., Bertoncello, P., Ding, H., Paddeu, S. andNicolini, C. (2001) Cholesterol biosensors prepared by layer-by-layer technique. Biosens. Bioelectron. 16, 849–856.

    PubMed  CAS  Google Scholar 

  • Rasiah, I.A., Sutton, K.H., Low, F.L., Lin, H.M. andGerrard, J.A. (2005) Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects and bread and croissants. Food Chem. 89, 325–332.

    CAS  Google Scholar 

  • Revol-Junelles, A.M., Boussouel, N., Ramet, J.P. andMilliÈre, J.B. (2001) Antibacterial activities of lactoperoxidase systems (LPS) modified by I- and IO -3 anions. Milchwissenshaft 56, 329–332.

    CAS  Google Scholar 

  • Reyes De Corcuera J.I., Cavalieri, R.P. andPowers J.R. (2005) Improved platinization conditions produce a 60-fold increase in sensitivity of amperometric biosensors using glucose oxidase immobilized in poly-o-phenylenediamine. J. Electroanal. Chem. 575, 229–241.

    CAS  Google Scholar 

  • Ricci, F. andPalleschi, G. (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron. 21, 389–407.

    PubMed  CAS  Google Scholar 

  • Ryabov, A.D., Firsova, Y.N, Ershov, A.Yu. and Dementiev, I.A. (1999) Spectrophotometric kinetic study and analytical implications of the glucose oxidase-catalyzed reduction of [MIII(LL)2Cl2]+ complexes by D-glucose (M=Os and Ru, LL=2,2-bipyridine and 1,10-phenanthroline type ligands). J. Biol. Inorg. Chem. 4, 175–182.

    PubMed  CAS  Google Scholar 

  • Sakka, K., Omiya, K. andShimada, K. (1994) Recombined DNA containing cholesterol oxidase gene and production method using same. Patent Mo.: JP6189754.

    Google Scholar 

  • Salimi, A., Noorbakhsh, A. andGhadermarz, M. (2005) Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode. Anal. Biochem. 344, 16–24.

    PubMed  CAS  Google Scholar 

  • Sampson, N.S., Kass, I.J and Ghoshroy, K.B. (1998) Assessment of the role of an omega loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity. Biochemistry 37, 5770–5778.

    PubMed  CAS  Google Scholar 

  • Sandholm, M., Ali-Vehmas, T., Kaartinen, L. andJunnila, M. (1988) Glucose oxidase (GOX) as a source of hydrogen peroxide for the lactoperoxidase (LPO) system in milk: antibacterial effect of the GOX-LPO system against mastitis pathogens. J. Vet. Med. B 35, 346–352.

    Article  CAS  Google Scholar 

  • Schumacher, D., Vogel, J. andLerche, U. (1994) Construction and application of an enzyme electrode for determination of galactose and galactose-containing saccharides. Biosens. Bioelectron. 9, 85–90.

    CAS  Google Scholar 

  • Singh, S., Chaubey, A. andMalhotra, B.D. (2004) Amperometric cholesterol biosensor based on immobilized ChEt and cholesterol oxidase on conducting polypyrrole films. Anal. Chim. Acta 502, 229–234.

    CAS  Google Scholar 

  • Situmorang, M., Alexander, P.W. andHibbert, D.B. (1999) Flow injection potentiometry for enzymatic assay of cholesterol with a tungsten electrode sensor. Talanta 49, 639–649.

    CAS  Google Scholar 

  • Switala, J., O’Neil, J.O. andLoewen, P.C. (1999) Catalase HPII from Escherichia coli exhibits enhanced resistance to denaturation. Biochemistry 38, 3895–3901.

    PubMed  CAS  Google Scholar 

  • Switala J. andLoewen P.C. (2002) Diversity of properties among catalases Arch. Biochem. Biophys. 401, 145–154.

    CAS  Google Scholar 

  • Takegawa, K., Fujiwara, K., Iwahara, S., Yamamoto, K. andTochikura, T. (1989) Effect of deglycosylation of N-linked sugar chains on glucose oxidase from Aspergillus niger. Biochem. Cell Biol. 67, 460–464.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, K. andIsobe, K. (1999) Production of acidproof catalase. Patent No.: JP11046760.

    Google Scholar 

  • Tan, X.C., Li, M.J., Cai, P.X., Luo, L.J. andZou, X.Y. (2005) An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal. Biochem. 337, 111–120.

    PubMed  CAS  Google Scholar 

  • Tarhan, L. (1995) Use of immobilized catalase to remove H2O2 used in the sterilisation of milk. Proc. Biochem. 30, 623–628.

    Google Scholar 

  • Tzanov, T., Costa, S., Gübitz, G.M. andCavaco-Paulo, A. (2001) Effect of temperature and bath composition on the dyeing of cotton with catalase-treated bleaching effluent. Color Technol. 117, 166–170.

    CAS  Google Scholar 

  • Tzanov, T., Costa, S.A., Gübitz, G.M. andCavaco-Paulo, A. (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J. Biotechnol. 93, 87–94.

    PubMed  CAS  Google Scholar 

  • Vemulapalli, V., Miller, K.A. andHoseney, R.C. (1998) Glucose oxidase in breadmaking systems. Cereal Chem. 75, 439–442.

    CAS  Google Scholar 

  • Visser, J. (1991) Biochemical and molecular approaches in understanding carbohydrate metabolism in Aspergillus niger. J. Chem. Tech. Biot. 50, 111–113.

    Article  CAS  Google Scholar 

  • Volotovsky, V. andKim, N. (1998) Determination of glucose, ascorbic and citric acids by two-ISFET multienzyme sensor. Sensor. Actuat. B-Chem. 49, 253–257.

    Google Scholar 

  • Wang, J. (1999) Amperometric biosensors for clinical and therapeutic drug monitoring: a review. J. Pharmaceut. Biomed. 19, 47–53.

    Google Scholar 

  • Wang, J., Lu, F., Angnes, L., Liu, J., Sakslund, H., Chen, Q., Pedrero, M., Chen, L. andHammbich, O. (1995) Remarkably selective metallized-carbon amperometric biosensors. Anal. Chim. Acta 305, 3–7.

    CAS  Google Scholar 

  • Watanabe, K., Aihara, H. andNakamura, M. (1986) Production of cholesterol oxidase. Patent No.: JP61247381.

    Google Scholar 

  • Whittaker, M.M. andWhittaker, J.W. (1988) The active site of galactose oxidase. J. Biol. Chem. 263, 6074–6080.

    PubMed  CAS  Google Scholar 

  • Whittaker, M.M. andWhittaker, J.W. (1990) A tyrosine-derived free radical in apogalactose oxidase. J. Biol. Chem. 265, 9610–9613.

    PubMed  CAS  Google Scholar 

  • Whittaker, M.M. andWhittaker, J.W. (2000) Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expres. Purif. 20, 105–111.

    CAS  Google Scholar 

  • Wilson, G.S. andGifford, R. (2005) Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20, 2388–2403.

    PubMed  CAS  Google Scholar 

  • Wohlfahrt, G., Witt, S., Hendle, J., Schomburg, D., Kalisz, H.M. andHecht, H.-J. (1999) 1.8 and 1.9 Å resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr. D Biol. Crystallogr. 55, 969–977.

    PubMed  CAS  Google Scholar 

  • Wu, B.L., Zhang, G.M., Shuang, S.M., Dong, C., Choi, M.M.F. andLee, A.W.M. (2005) A biosensor with myrosinase and glucose oxidase bienzyme system for determination of glucosinolates in seeds of commonly consumed vegetables. Sensor. Actuat. B-Chem. 106, 700–707.

    Google Scholar 

  • Wu, A.J., Penner-Hahn, J.E. andPecoraro, V.L. (2004) Structural, spectroscopic, and reactivity models for the manganese catalases. Chem. Rev. 104, 903–938.

    PubMed  CAS  Google Scholar 

  • Wu, X.J. andChoi, M.M.F. (2003) Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Anal. Chem. 75, 4019–4027.

    PubMed  CAS  Google Scholar 

  • Xie, L.L. andvan der Donk, W.A. (2001) Homemade cofactors: self-processing in galactose oxidase. Proc. Natl. Acad. Sci. USA 98, 12863–12865.

    PubMed  CAS  Google Scholar 

  • Xu, F., Golightly, E.J., Schneider, P., Berka, R.M., Brown, K.M., Johnstone, J.A., Baker, D.H., Fuglsang, C.C., Brown, S.H. andKlotz, A.V. (2000) Expression and characterisation of a recombinant Fusarium spp. galactose oxidase. Appl. Biochem. Biotech. 88, 23–32.

    CAS  Google Scholar 

  • Yu, J.H., Liu, S.Q. andJu, H.X. (2003) Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane Biosens. Bioelectron. 19, 401–409.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Adányi, N., Barna, T., Emri, T., Miskei, M., Pócsi, I. (2007). Hydrogen Peroxide Producing and Decomposing Enzymes: their Use in Biosensors and other Applications. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_25

Download citation

Publish with us

Policies and ethics