Skip to main content

Abstract

Computer-aided techniques of rational design of enzyme inhibitors were reviewed. In silico lead generation and optimization protocols were outlined and several methods of inhibitor potency estimation by both empirical scoring functions as well as ab initio based calculations were described. Two representative examples of successful computer-aided analysis and design of novel, highly potent inhibitors of leucine aminopeptidase and glutamine synthetase were demonstrated. In addition fully nonempirical and systematic analysis of the physical nature of enzyme active site interactions has been performed for series of leucine aminopeptidase (LAP) and phenylalanine ammonia lyase (PAL) inhibitors. Results derived from ab initio calculations indicate that inhibitory activity is controlled by interactions with limited number of active site residues. Examination of entire hierarchy of theoretical models indicates that the inhibitory activity could be well represented by electrostatic interactions, leading to so called ‘‘electrostatic key-lock’’ principle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L Pauling (1946) Molecular architecture and biological reactions, Chem Eng News 24, 1375–1377

    CAS  Google Scholar 

  2. L Pauling (1948) Chemical achievement and hope for the future, AmSci 36: 51–58

    CAS  Google Scholar 

  3. WL Jorgensen (2004) The many roles of computation in drugdiscovery, Science 303 (5665), 1813–1818

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Ł Berlicki, P Kafarski (2005) Computer-Aided Analysis andDesign of Phosphonic and Phosphinic Enzyme Inhibitors as PotentialDrugs and Agrochemicals, Curr Org Chem 9 (18): 1829–1850

    Article  CAS  Google Scholar 

  5. F Ooms (2000) Molecular Modeling and Computer Aided Drug DesignExamples of their Applications in Medicinal Chemistry, Curr MedChem 7: 141–158

    CAS  Google Scholar 

  6. I Muegge (2003) Selection criteria for drug-like compounds, MedRes Rev 23 (3): 302–321

    Article  CAS  Google Scholar 

  7. R Abagyan, M Totrov (2001) High-throughput docking for leadgeneration, Curr Opin Chem Biol 5 (4): 375–382

    Article  PubMed  CAS  Google Scholar 

  8. KE Goodwill, MG Tennant, RC Stevens (2001) High-throughput x-raycrystallography for structure-based drug design, Drug DiscoveryToday 6 (2): 113–118

    Article  Google Scholar 

  9. KH Gardner, LE Kay (1998) The use of H-2, C-13, N-15multidimensional NMR to study the structure and dynamics ofproteins, Ann Rev Biophys Biomol Struct 27: 357–406

    Article  CAS  Google Scholar 

  10. V Kanelis, JD Forman-Kay, LE Kay (2001) Multidimensional NMRmethods for protein structure determination, IUBMB Life 52(6): 291–302

    PubMed  CAS  Google Scholar 

  11. A Hillisch, LF Pineda, R Hilgenfeld (2004) Utility of homologymodels in the drug discovery process, Drug Discovery Today 9(15): 659–669

    Article  PubMed  CAS  Google Scholar 

  12. RD Taylor, PJ Jewsbury, JW Essex (2002) A review of protein-smallmolecule docking methods, J Comput Aided Mol Des 16 (3): 151–166

    Article  PubMed  CAS  Google Scholar 

  13. TJA Ewing, S Makino, AG Skillman, ID Kuntz (2001) DOCK 40: Searchstrategies for automated molecular docking of flexible moleculedatabases, J Comput Aided Mol Des 15 (5): 411–428

    Article  PubMed  CAS  Google Scholar 

  14. G Jones, P Willett, RC Glen (1995) Molecular recognition ofreceptor sites using a genetic algorithm with a description ofdesolvation, J Mol Biol 245 (1): 43–53

    Article  PubMed  CAS  Google Scholar 

  15. ML Verdonk, JC Cole, MJ Hartshorn, CW Murray, RD Taylor (2003) Improved Protein-Ligand Docking Using GOLD, Proteins 52(4): 609–623

    Article  PubMed  CAS  Google Scholar 

  16. M Rarey, B Kramer, T Lengauer, G Klebe (1996) A Fast FlexibleDocking Method using an Incremental Construction Algorithm, J MolBiol 261(3): 470–489

    Article  CAS  Google Scholar 

  17. P Kirkpatrick (2004) Virtual screening: Gliding to success, NatureReviews Drug Discovery 3: 299–299

    Article  CAS  Google Scholar 

  18. T A Halgren, R B Murphy, R A Friesner, H S Beard, L L Frye, W TPollard, J L Banks (2004) Glide: A New Approach for Rapid,Accurate Docking and Scoring 2 Enrichment Factors in DatabaseScreening, J Med Chem 47(7): 1750–1759

    Article  PubMed  CAS  Google Scholar 

  19. R A Friesner, J L Banks, R B Murphy, T A Halgren, J J Klicic, D TMainz, M P Repasky, E H Knoll, M Shelley, J K Perry, D E Shaw, PFrancis, P S Shenkin (2004) Glide: A New Approach for Rapid,Accurate Docking and Scoring 1 Method and Assessment of DockingAccuracy, J Med Chem 47(7): 1739–1749

    Article  PubMed  CAS  Google Scholar 

  20. H-J Böhm (1993) A novel computational tool for automatedstructure-based drug design, J Mol Rec 6(3): 131–137

    Article  ADS  Google Scholar 

  21. G M Morris, DS Goodsell, RS Halliday, R Huey, WE Hart, RK Belew,AJ Olson (1998) Automated Docking Using a Lamarckian GeneticAlgorithm and Empirical Binding Free Energy Function, JComputChem 19: 1639–1662

    CAS  Google Scholar 

  22. H Gohlke, G Klebe, Approaches to the Description and Prediction ofthe Binding Affinity of Small-Molecule Ligands to MacromolecularReceptors, Angew Chem Int Ed 41(15): 2644–2676

    Google Scholar 

  23. hm1994 HJ Böhm (1994) The development of a simple empirical scoringfunction to estimate the binding constant for a protein-ligandcomplex of known three-dimensional structure, J Comput Aided Mol

    Google Scholar 

  24. MD Eldridge, CW Murray, TR Auton, GV Paolini, RP Mee (1997) Empirical scoring functions: I The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J Comput Aided Mol Des 11(5):425–445

    Article  PubMed  CAS  Google Scholar 

  25. G Jones, P Willett, RC Glen, AR Leach, R Taylor (1997) Development and Validation of a Genetic Algorithm for Flexible Docking, J Mol Biol 267(3):727–748

    Article  PubMed  CAS  Google Scholar 

  26. R Wang, L Lai, S Wang (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction, J Comput Aided Mol Des 16(1):11–26

    Article  PubMed  CAS  Google Scholar 

  27. TJA Ewing, ID Kuntz (1997) Critical evaluation of search algorithms for automated molecular docking and database screening, J Comput Chem 18(9):1175–1189

    Article  CAS  Google Scholar 

  28. H Gohlke, M Hendlich, G Klebe (2000) Knowledge-based scoring function to predict protein-ligand interactions, J Mol Biol 295(2):337–356

    Article  PubMed  CAS  Google Scholar 

  29. I Muegge, Y C Martin (1999) A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential Approach, J Med Chem 42(5):791–804

    Article  PubMed  CAS  Google Scholar 

  30. P S Charifson, J J Corkery, M A Murcko, W P Walters (1999) Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins, J Med Chem 42(25):5100–5109

    Article  PubMed  CAS  Google Scholar 

  31. R Wang, Y Lu, S Wang (2003) Comparative Evaluation of 11 Scoring Functions for Molecular Docking, J Med Chem 46(12):2287–2303

    Article  PubMed  CAS  Google Scholar 

  32. M Jacobsson, P Liden, E Stjernschantz, H Bostrom, U Norinder (2003) Improving Structure-Based Virtual Screening by Multivariate Analysis of Scoring Data, J Med Chem 46(26):5781–5789

    Article  PubMed  CAS  Google Scholar 

  33. AC Anderson (2003) The Process of Structure-Based Drug Design, Chem Biol 10(9):787–797

    Article  PubMed  CAS  Google Scholar 

  34. RS Bohacek, C McMartin (1997) Modern computational chemistry and drug discovery: structure generating programs, Curr Opin Chem Biol 1(2):157–161

    Article  PubMed  CAS  Google Scholar 

  35. Y Nishibata, A Itai (1993) Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation, J Med Chem 36(20):2921–2928

    Article  PubMed  CAS  Google Scholar 

  36. RS Bohacek, C McMartin (1994) Multiple Highly Diverse Structures Complementary to Enzyme Binding Sites: Results of Extensive Application of a de Novo Design Method Incorporating Combinatorial Growth, J Am Chem Soc 116(13):5560–5571

    Article  CAS  Google Scholar 

  37. SH Rotstein, MA Murcko (1993) GenStar: a method for de novo drug design, J Comput Aided Mol Des 7(1):23–43

    Article  PubMed  CAS  Google Scholar 

  38. DK Gehlhaar, KE Moerder, D Zichi, CJ Sherman, RC Ogden, ST Freer (1995) De novo design of enzyme inhibitors by Monte Carlo ligand generation, J Med Chem 38(3):466–472

    Article  PubMed  CAS  Google Scholar 

  39. V Gillet, AP Johnson, P Mata, S Sike, P Williams (1993) SPROUT: a program for structure generation, J Comput Aided Mol Des 7(2):127–153

    Article  PubMed  CAS  Google Scholar 

  40. DA Pearlman, MA Murcko (1993) CONCEPTS: New dynamic algorithm for de novo drug suggestion, J Comput Chem 14(10):1184–1193

    Article  CAS  Google Scholar 

  41. JB Moon, WJ Howe (1991) Computer design of bioactive molecules: A method for receptor-based de novo ligand design, Proteins: Struct, Funct, Genet 11(4):314–328

    Article  CAS  Google Scholar 

  42. V Tschinke, NC Cohen (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses, J Med Chem 36(24):3863–3870

    Article  PubMed  CAS  Google Scholar 

  43. SH Rotstein, MA Murcko (1993) GroupBuild: a fragment-based method for de novo drug design, J Med Chem 36(12):1700–1710

    Article  Google Scholar 

  44. DC Roe, ID Kuntz (1993) BUILDER v2: improving the chemistry of a de novo design strategy, J Comput Aided Mol Des 9(3):269–282

    Article  Google Scholar 

  45. MB Eisen, DC Wiley, M Karplus, RE Hubbard (1994) HOOK: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site, Proteins: Struct, Funct, Genet 19(3):199–221

    Article  CAS  Google Scholar 

  46. DA Pearlman, MA Murcko (1996) CONCERTS: Dynamic Connection of Fragments as an Approach to de Novo Ligand Design, J Med Chem 39(8): 1651–1663

    Article  PubMed  CAS  Google Scholar 

  47. R S DeWitte, E I Shakhnovich (1996) SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates 1 Methodology and Supporting Evidence, J Am Chem Soc 118(47): 11733–11744

    Article  CAS  Google Scholar 

  48. R S DeWitte, A V Ishchenko, E I Shakhnovich (1997) SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates 2 Case Studies in Molecular Design, J Am Chem Soc 119(20): 4608–4617

    Article  CAS  Google Scholar 

  49. H-J Böhm (1992a) The computer program LUDI: a new method for the de novo design of enzyme inhibitors, J Comput Aided Mol Design 6(1): 61–78

    Article  Google Scholar 

  50. H-J Böhm (1992b) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads, J Comput Aided Mol Design 6(6): 593–606

    Article  Google Scholar 

  51. HJ Böhm (1996) Towards the automatic design of synthetically accessible protein ligands: peptides, amides and peptidomimetics, J Comput Aided Mol Design 10(4): 265–272

    Article  Google Scholar 

  52. S F Boys, F Bernardi (1970) Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors, Mol Phys 19(4): 553

    Article  ADS  CAS  Google Scholar 

  53. WA Sokalski, S Roszak, K Pecul (1988) An efficient procedure for decomposition of the SCF interaction energy into components with reduced basis set dependence: Chem Phys Lett 153(2,3): 153–159

    Article  ADS  CAS  Google Scholar 

  54. WA Sokalski, P Kedzierski, J Grembecka (2001) Ab initio study of the physical nature of interactions between enzyme active site fragments in vacuo, Phys Chem Chem Phys 3(5): 657–663

    Article  Google Scholar 

  55. B Szefczyk, A J Mulholland, K E Ranaghan, W A Sokalski (2004) Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field, J Am Chem Soc 126 (49): 16148–16159

    Article  PubMed  CAS  Google Scholar 

  56. J Grembecka, P Kedzierski, WA Sokalski (1999) Non-empirical analysis of the nature of the inhibitor-active-site interactions in leucine aminopeptidase, Chem Phys Lett 313(1): 385–392

    Article  CAS  Google Scholar 

  57. J Grembecka, WA Sokalski, P Kafarski (2001) Quantum chemical analysis of the interactions of transition state analogs with leucine aminopeptidase, Int J Quantum Chem 84(2), 302–310

    Article  CAS  Google Scholar 

  58. E Dyguda, J Grembecka, WA Sokalski, J Leszczynski (2005) Origins of the activity of PAL and LAP enzyme inhibitors: Toward ab initio binding affinity prediction, J Am Chem Soc 127(6): 1658–1659

    Article  PubMed  CAS  Google Scholar 

  59. A Taylor (1993) Aminopeptidases: towards a mechanism of action, Trends Biochem Sci 18: 167–171

    PubMed  CAS  Google Scholar 

  60. EL Smith, RL Hill, (1960) in: The enzymes, Academic Press, New York, pp 37–62

    Google Scholar 

  61. N Strater, WN Lipscomb (1995) Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography, Biochemistry 34: 14792–14800

    Article  PubMed  CAS  Google Scholar 

  62. H Kim, WN Lipscomb (1994) Structure and mechanism of bovine lens leucine aminopeptidase, Adv Enzymol Relat Areas Mol Biol 68: 153–213

    Article  PubMed  CAS  Google Scholar 

  63. N Strater, L Sun, ER Kantrowitz, WN Lipscomb (1999) A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase, Proc Natl Acad Sci USA 96: 11151–11155

    Article  PubMed  ADS  CAS  Google Scholar 

  64. A Taylor (1993) Aminopeptidases: structure and function, FASEB J 7: 290–298

    PubMed  CAS  Google Scholar 

  65. H Umezawa (1980) Screening of small molecular microbial products modulating immune responses and bestatin, Recent Results Cancer Res 75: 115–125

    PubMed  CAS  Google Scholar 

  66. SK Gupta, M Aziz, AA Khan (1989) Serum leucine aminopeptidase estimation: a sensitive prognostic indicator of invasiveness in breast carcinoma, Indian J Pathol Microbiol 32: 301–305

    PubMed  CAS  Google Scholar 

  67. A Taylor, M Daims, J Lee, T Surgenor (1982) Identification and quantification of leucine aminopeptidase in aged normal and cataractous human lenses and ability of bovine lens LAP to cleave bovine crystallins, Curr Eye Res 2: 47–56

    PubMed  CAS  Google Scholar 

  68. A Taylor, ,MJ Brown, ,MA Daims, ,J Cohen (1983) Localization of leucine aminopeptidase in normal hog lens by immunofluorescence and activity assays, Invest Ophthalmol Vis Sci 24:1172–1180

    PubMed  CAS  Google Scholar 

  69. A Taylor, ,T Surgenor, ,DK Thomson, ,RJ Graham, ,H Oettgen (1984) Comparison of leucine aminopeptidase from human lens, beef lens and kidney, and hog lens and kidney, Exp Eye Res 38:217–229

    Article  PubMed  CAS  Google Scholar 

  70. CS Scott, ,M Davey, ,A Hamilton, ,DR Norfolk (1986) Serum enzyme concentrations in untreated acute myeloid leukaemia, Blut 52:297–303

    Article  PubMed  CAS  Google Scholar 

  71. J Beninga, ,KL Rock, ,AL Goldberg (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase, J Biol Chem 273:18734–18742

    Article  PubMed  CAS  Google Scholar 

  72. G Pulido-Cejudo, ,B Conway, ,P Proulx, ,R Brown, ,CA Izaguirre (1997) Bestatin-mediated inhibition of leucine aminopeptidase may hinder HIV infection, Antiviral Res 36:167–177

    Article  PubMed  CAS  Google Scholar 

  73. J Grembecka, ,WA Sokalski, ,P Kafarski (2000) Computer-aided design and activity prediction of leucine aminopeptidase inhibitors, J Comput Aid Mol Des 14(6) 531–544

    Article  CAS  Google Scholar 

  74. J Grembecka, ,A Mucha, ,T Cierpicki, ,P Kafarski (2003) The most potent organophosphorus inhibitors of leucine aminopeptidase Structure-based design, chemistry, and activity, J Med Chem 46(13):2641–2655

    Article  PubMed  CAS  Google Scholar 

  75. H-J Böhm (1998) Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs, J Comput Aided Mol Design 12(4):309–323

    Article  Google Scholar 

  76. M Drag, ,J Grembecka, ,M Pawelczak, ,P Kafarski (2005) alpha-aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucine - and neutral aminopeptidases, Eur J Med Chem 40(8):764–771

    Article  PubMed  CAS  Google Scholar 

  77. D Eisenberg, ,HS Gill, ,GM Pfluegl, ,SH Rotstein (2000) Structure-function relationships of glutamine synthetases, Biochim Biophys Acta 1477(1):122–145

    PubMed  CAS  Google Scholar 

  78. ER Stadtman (2001) The Story of Glutamine Synthetase Regulation, J Biol Chem 276(48):44357–44364

    Article  PubMed  CAS  Google Scholar 

  79. GM Kishore, ,DM Shah (1988) Amino acid biosynthesis inhibitors as herbicides, Ann Rev Biochem 57:627–663

    Article  PubMed  CAS  Google Scholar 

  80. E Bayer, ,K H Gugel, ,K Hägele, ,H Hagenmaier, ,S Jessipow, ,W A Köonig, ,H Zähner (1972) Metabolic products of microorganisms 98 Phosphinothricin and phosphinothricyl-alanyl-analine, Helv Chim Acta 55:224–239

    Article  PubMed  CAS  Google Scholar 

  81. K Tachibana (1987) Herbicidal characteristics of bialphos, in Pesticide Science and Biotechnology, R Greenhalgh T.R. Roberts (Eds) pp 145–148

    Google Scholar 

  82. A Wild, ,H Sauer, ,W Rühle (1987) The effect of phosphinothricin (glufosinate) on photosynthesis I: Inhibition of photosynthesis and accumulation of ammonia, Z Naturforsch 42:263–269

    CAS  MathSciNet  Google Scholar 

  83. K Tachibana, ,T Watanabe, ,Y Sekizawa, ,T Takematsu (1986) Accumulation of ammonia in plants treated with bialphos, J Pest Sci 11:33–37

    CAS  Google Scholar 

  84. PJ Lea, ,KW Joy, ,JL Ramos, ,MG Guerrero (1984) The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants, Phytochemistry 23:1–6

    Article  CAS  Google Scholar 

  85. A Wild, ,R Manderscheid (1984) The effect of phosphinothricin in the assimilation of ammonia in plants, Z Naturforsch 39:500–504

    Google Scholar 

  86. H Sauer, ,A Wild, ,W Rühle (1987) The effect of phosphinothricin (glufosinate) on photosynthesis II: The causes of inhibition of photosynthesis, Z Naturforsch 42:270–278

    CAS  Google Scholar 

  87. G Harth, ,MA Horwitz (1999) An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets, J Exp Med 189(9):1425–1436

    Article  PubMed  CAS  Google Scholar 

  88. G Harth, ,MA Horwitz (2003) Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo, Infect Immun 71(1):456–464

    Article  PubMed  CAS  Google Scholar 

  89. RJ Almassy, CA Janson, R Hamlin, NH Xuong, D Eisenberg (1986) Novel subunit-subunit interactions in the structure of glutamine synthetase, Nature 323(6086):304–309

    Article  PubMed  ADS  CAS  Google Scholar 

  90. MM Yamashita, RJ Almassy, CA Janson, D Cascio, D Eisenberg (1989) Refined atomic model of glutamine synthetase at 35 A resolution, J Biol Chem 264:17681–17690

    PubMed  CAS  Google Scholar 

  91. S H Liaw, D Eisenberg (1994) Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes, Biochemistry 33(3):675–681

    Article  PubMed  CAS  Google Scholar 

  92. RA Ronzio, A Meister (1968) Phosphorylation of Methionine Sulfoximine by Glutamine Synthetase, Proc Natl Acad Sci USA 59(1):164–170

    Article  PubMed  ADS  CAS  Google Scholar 

  93. J A Colanduoni, J J Villafranca (1986) Inhibition of E coli glutamine synthetase by phosphino -thricin, Bioorg Chem 14:163–169

    Article  CAS  Google Scholar 

  94. H S Gill, D Eisenberg (2001) The Crystal Structure of Phosphinothricin in the Active Site of Glutamine Synthetase Illuminates the Mechanism of Enzymatic Inhibition, Biochemistry 40(7):1903–1912

    Article  PubMed  CAS  Google Scholar 

  95. L Berlicki, P Kafarski (2006), Computer-aided analysis of the interactions of glutamine synthetase with its inhibitors, Bioorg Med Chem 14(13):4578–4585

    Article  PubMed  CAS  Google Scholar 

  96. L Berlicki, A Obojska, G Forlani, P Kafarski (2005) Design, Synthesis, and Activity of Analogues of Phosphinothricin as Inhibitors of Glutamine Synthetase, J Med Chem 48(20):6340–6349

    Article  PubMed  CAS  Google Scholar 

  97. K RHanson, E A Havir (1981) Phenylalanine ammonia-lyase In The Biochemistry of Plants, Vol 7: Secondary Plant Metabolites Conn, E E edt; Academic Press, New York; pp 577–625

    Google Scholar 

  98. H Griesbach,H Lignins (1981) In The Biochemistry of Plants, Vol 7: Secondary Plant Metabolites Conn, E E edt; Academic Press, New York; pp 457–478

    Google Scholar 

  99. C N Sarkissian, Z Shao, F Blain, R Peevers, H S Su, R Heft, T M S Chang, T S Scriver (1999) A different approach to treatment of phenylketonuria: Phenylalanine degradation with recombinant phenylalanine ammonia lyase, Proc Natl Acad Sci USA 96(5):2339–2344

    Article  PubMed  ADS  CAS  Google Scholar 

  100. B Schuster, J Retey (1994) Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonia lyase FEBS Lett 349(2):252–254

    Article  PubMed  CAS  Google Scholar 

  101. B Langer, D Rother, J Retey (1997) Identification of essential amino acids in phenylalanine ammonia-lyase by site-directed mutagenesis Biochemistry 36(36):10867–10871

    Article  PubMed  CAS  Google Scholar 

  102. M Baedeker, G E Schulz (2002) Structures of two histidine ammonia-lyase modifications and implications for the catalytic mechanism Eur J Biochem 269(6):1790–1797

    CAS  Google Scholar 

  103. T F Schwede, J Retey, G E Schulz (1999) Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile Biochemistry 38(17):5355–5361

    Article  PubMed  CAS  Google Scholar 

  104. D Rother, L Poppe, G Morlock, S Viergutz, J Retey (2002) An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum, Eur J Biochem 269(12):3065–3075

    Article  PubMed  CAS  Google Scholar 

  105. A Skolaut, J Retey (2001) 1,4-Dihydrophenylalanine – its synthesis and behavior in the phenylalanine ammonia-lyase reaction Archiv Biochem Biophys 393(2):187–191

    Article  CAS  Google Scholar 

  106. J Zon, N Amrhein, R Gancarz (2002) Inhibitors of phenylalanine ammonia-lyase: 1-aminobenzylphosphonic acid substituted in the benzene ring Phytochemistry 59(1):9–21

    Article  PubMed  CAS  Google Scholar 

  107. C Appert, J Zoň, N Amrhein (2003) Kinetic analysis of the inhibition of phenylalanine ammonia-lyase by 2-aminoindan-2-phosphonic acid and other phenylalanine analogues Phytochemistry 62(3):415–422

    Article  PubMed  CAS  Google Scholar 

  108. J Zoň, P Miziak, N Amrhein, R Gancarz (2005) Inhibitors of Phenylanine Ammonia-Lyase (PAL): Synthesis and Biological Evaluation of 5-Substituted 2-Aminoindane-2-phosphonic Acids Chemistry and Biodiversity 2(9):1187–1194

    Article  Google Scholar 

  109. H Ritter, G E Schulz (2004) Structural Basis for the Entrance into the Phenylpropanoid Metabolism Catalyzed by Phenylalanine Ammonia-Lyase The Plant Cell 16(12):3426-3436

    Article  PubMed  CAS  Google Scholar 

  110. J C Calabrese, D B Jordan, A Boodhoo, S Sariaslani, T Vannelli (2004) Crystal Structure of Phenylalanine Ammonia-Lyase: Multiple Helix Dipoles Implicated in Catalysis. Biochemistry 43(36):11403–11416

    Article  PubMed  CAS  Google Scholar 

  111. B Langer, M Langer, J Retey (2001) Methylidene-imidazolone (MIO) from histidine and phenylalanine ammonia-lyase, Adv Protein Chem 58:175–214

    Article  PubMed  CAS  Google Scholar 

  112. L Maier, P J Diel (1994) Synthesis, physical and biological properties of the phosphorus analogs of phenylalanine and related compounds, Phosphorus Sulfur 90(1–4):259–279

    CAS  Google Scholar 

  113. L E Chirlian, M M Francl (1987) Atomic charges derived from electrostatic potentials – a detailed study, J Comp Chem 8(6):894–905

    Article  CAS  Google Scholar 

  114. G Naray-Szabo (1984) Quantum chemical calculation of the enzyme ligand interaction energy for trypsin inhibition by benzamidines, J Am Chem Soc 106(16):4584–4589

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Berlicki, Ł., Grembecka, J., Dyguda-Kazimierowicz, E., Kafarski, P., Sokalski, W.A. (2007). From Inhibitors of Lap to Inhibitors of Pal. In: Sokalski, W.A. (eds) Molecular Materials with Specific Interactions – Modeling and Design. Challenges and Advances in Computational Chemistry and Physics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5372-X_8

Download citation

Publish with us

Policies and ethics