Computational Determination of the Relative Free Energy of Binding – Application to Alanine Scanning Mutagenesis

Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 4)


Protein-protein recognition and complex formation are key issues in understanding cellular functions. Therefore, having in mind that it is of extreme importance to detect the functional sites in proteins interfaces, the present review focuses on computational approaches used to calculate the binding free energy contributions of each of the interface residues. Usually these methods do not allow the calculation of the contribution of each residue for binding in the wild type complex, but instead the difference in binding free energy between the wild type and a given residue. Although the first would be more meaningful from a phenomenological point of view, the second is the only one that is possible to measure experimentally. A number of quantitative models with different levels of rigor and speed are available for determination of the relative binding energy upon alanine mutation of residues in protein-protein interfaces. These algorithms can be divided essentially in two types: (a) empirical functions or simple physical methods and (b) fully atomistic methods Computer simulations complement experimental analysis, and add molecular insight to the macroscopic properties, by allowing the decomposing of the binding free energy into contributions of the various energetic factors. The capacity of predicting protein-protein associations is essential in computational chemistry because it establishes the connecting bridge between structure and function of biomolecular systems, and it allows the characterization of the energetics of molecular complexes


binding free energy computational mutagenesis empirical functions fully atomistic methods protein-protein association MM-PBSA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kortemme T, Baker D (2004) Computational design of protein-protein interactions, Curr Opin Chem Biol, 8: 91–97PubMedCrossRefGoogle Scholar
  2. 2.
    Russel RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A (2004) A structural perspective on protein-protein interactions, Curr Opin Struct Biol, 14: 313–324CrossRefGoogle Scholar
  3. 3.
    Verkhivker GM (2004) Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations, Mol J Graph Model, 22(5): 335–348CrossRefGoogle Scholar
  4. 4.
    Moreira IS, Fernandes PA, Ramos MJ (2006) Hot spots – a detailed review of protein-protein interface determinant amino acid residues (Submitted)Google Scholar
  5. 5.
    Baker D, Agard DA (1994) Kinetics versus thermodynamics in protein folding, Biochemistry, 33: 7505–7509PubMedCrossRefGoogle Scholar
  6. 6.
    Braden BC, Poljak RJ(1995) Conservation of water molecules in an antibody-antigen interaction, Mol J Recogn, 9: 317–325CrossRefGoogle Scholar
  7. 7.
    Braden BC, Fields BA, Ysern X, Goldbaum FA, Dall’Acqua W, Schwartz FP, Poljak RJ, Mariuzza RA (1996) Crystal structure of the complex of the variable domain of antibody D1.3 and the turkey egg with lysozyme: a novel conformational change in antibody CDF-L3 selects for antigen, J Mol Biol, 257: 889–894PubMedCrossRefGoogle Scholar
  8. 8.
    Dall’Acqua W, Goldman E, Eisenstein E, Mariuzza RA (1996) A mutational analysis of the binding of two different proteins to the same antibody, Biochemistry, 35: 9667–9676PubMedCrossRefGoogle Scholar
  9. 9.
    DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A (1999) De novo design and structural characterization of proteins and metalloproteins, Annu Rev Biochem, 68: 779–819PubMedCrossRefGoogle Scholar
  10. 10.
    Davis ME, Mccammon JA (1990) Electrostatics in biomolecular structure and dynamics, Chem Rev, 94: 7684Google Scholar
  11. 11.
    Frader X, de la Cruz X, CHTP Silva, Gelpi JL, Luque FJ and Orozco M(2002) Ligand-induced changes in the binding sites of proteins, Bioinformatics, 18(7): 939–948CrossRefGoogle Scholar
  12. 12.
    Hill RB, Raleigh DP, DeGrado WF (2000) De novo design of helical bundles as models for understanding protein folding and function, Acc Chem Res, 33: 745–754PubMedCrossRefGoogle Scholar
  13. 13.
    Lubienski MJ, Bycroft M, Freund SMV, Fersht AR (1994) 13C assignments and the three-dimensional solution structure of barstar using nuclear magnetic resonance spectroscopy, Biochemistry, 33: 8866–8877PubMedCrossRefGoogle Scholar
  14. 14.
    Nakamura HQ (1996) Roles of electrostatic interactions in proteins, Rev Biophys, 29: 1–90Google Scholar
  15. 15.
    Sheinerman FB, Norel R, Honig B (2000) Electrostatics aspects of protein-protein interactions, Curr Opin Struct Biol, 10: 153–159PubMedCrossRefGoogle Scholar
  16. 16.
    Schreiber G, Fersht AR (1995) Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles, J Mol Biol, 248: 478–486PubMedGoogle Scholar
  17. 17.
    de Silva AP, Gunaratne HQN , Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev, 97: 1515PubMedCrossRefGoogle Scholar
  18. 18.
    Sellergren BJ (2001) Imprinted chiral stationary phases in high-performance liquid chromatography, Chromatogr A J, 906(1–2): 227–252, ReviewCrossRefGoogle Scholar
  19. 19.
    Deng Q, German I, Buchanan D, Kennedy RT (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase, Anal Chem, 73: 5415–5421PubMedCrossRefGoogle Scholar
  20. 20.
    Anthonsen HW, Baptista A, Drablos F, Martel P, Petersen SB (1994) The blind watchmaker and rational protein engineering, J Biotechnol, 36: 185–220PubMedCrossRefGoogle Scholar
  21. 21.
    Gordon DB, Marshall SA, Maya SL (1999) Curr Opin Struct Biol, 9: 509–513PubMedCrossRefGoogle Scholar
  22. 22.
    Michielin O, Luescher I, Karplus M (2000) Modeling of the TCR-MHC-peptide complex, M J Mol Biol , 300: 1205–1235CrossRefGoogle Scholar
  23. 23.
    Gane PJ, Dean PM (2000) Recent advances in structure-based rational drug design, Curr Opin Struct Biol, 10: 401PubMedCrossRefGoogle Scholar
  24. 24.
    Ajay, Murcko MA (1995) Computational methods to predict binding free energy in ligand-receptor complexes, J Med Chem , 38: 4953–4967PubMedGoogle Scholar
  25. 25.
    Lazaridis T (2002) Binding affinity and specificity from computational studies, Current Organic Chemistry, 6: 1319–1332CrossRefGoogle Scholar
  26. 26.
    McCammon JA (1998) Theory of Biomolecular Recognition, Curr Opin Struct Biol, 8: 245PubMedCrossRefGoogle Scholar
  27. 27.
    Stites WE (1997) Protein–protein interactions: interface structure, binding thermodynamics and mutational analysis, Chem Rev, 97: 1233PubMedCrossRefGoogle Scholar
  28. 28.
    Jones S, Thorton JM (1996) Principles of protein–protein interactions, Proc Natl Acad Sci USA, 93: 7CrossRefGoogle Scholar
  29. 29.
    Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies, Proc Natl Acad Sci USA, 93: 7PubMedADSCrossRefGoogle Scholar
  30. 30.
    Brooijmans N, Sharp KA, Kruntz ID (2002) Stability of macromolecular complexes, Proteins, 48: 645PubMedCrossRefGoogle Scholar
  31. 31.
    Fersht AR (1987) The hydrogen bond in molecular recognition, Trends Biochem Sci, 12: 301–304CrossRefGoogle Scholar
  32. 32.
    Perutz M (1992) Protein structure, new approaches to disease and therapy, New York: WH Freeman and CompanyGoogle Scholar
  33. 33.
    Wells JA (1991) Systematic mutational analyses of protein-protein interfaces, Methods Enzymol, 202: 390–411PubMedCrossRefGoogle Scholar
  34. 34.
    Wells JA, De Vos AM (1993) Structure and function of human growth hormone: implications for the hematopoietins, Annu Rev Biophys Biomol Struct, 22: 329–351PubMedCrossRefGoogle Scholar
  35. 35.
    Wells JA (1994) Structural and functional basis for hormone binding and receptor oligomerization, Curr Opin Cell Biol, 6: 163–173PubMedCrossRefGoogle Scholar
  36. 36.
    Wells JA (1996) Binding in the growth hormone receptor complex, Proc Natl Acad Sci USA, 93: 1–6PubMedADSCrossRefGoogle Scholar
  37. 37.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PM(2003) Computational detection of the binding-site hot spot at the remodelled human growth hormone-receptor interface, Proteins, 53: 201–219PubMedCrossRefGoogle Scholar
  38. 38.
    Thornton JM (2001) The Hans Neurath Award lecture of The Protein Society: proteins – A testament to physics, chemistry, and evolution, Protein Sci, 10: 3–11PubMedCrossRefGoogle Scholar
  39. 39.
    Cunnigham BC, Wells JA (1993) Comparison of a structural and functional epitope, J Mol Biol, 234: 554–563CrossRefGoogle Scholar
  40. 40.
    Clackson T, Wells JA (1995) A hot spot of binding energy hormone-receptor interfaces, Science, 267: 383–386PubMedADSCrossRefGoogle Scholar
  41. 41.
    Conte LL, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites, J Mol Biol, 285: 2177–2198PubMedCrossRefGoogle Scholar
  42. 42.
    Arkin MR, Wells AJ (2004) Small-molecules inhibitors of protein-protein interactions: progressing towards the dream, Drug Discovery, 3: 301–317PubMedCrossRefGoogle Scholar
  43. 43.
    Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted AC (2003) Binding of small molecules to an adaptive protein–protein interface, Proc Natl Acad Sci USA, 100: 1603–1608PubMedADSCrossRefGoogle Scholar
  44. 44.
    Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces, J Mol Biol, 280: 1–9PubMedCrossRefGoogle Scholar
  45. 45.
    Keskin O, Ma B, R Nussinov R (2005) Hot regions in protein-protein interactions: the organization and contribution of structurally conserved hot spot residues, J Mol Biol, 345: 1281–1294PubMedCrossRefGoogle Scholar
  46. 46.
    Pons J, Rajpal A, Kirsch J (1999) Energetic analysis of an antigen/antibody interface: alanine scanning mutagenesis and double mutant cycles on the HyHEL-100lysozyme interaction, Protein Sci, 8: 958–968PubMedGoogle Scholar
  47. 47.
    Zhang T, Koshland DE (1996) Computational method for relative binding energies of enzyme-substrate complexes, Protein Sci, 5: 348–356PubMedGoogle Scholar
  48. 48.
    Åqvist J, Luzhkov B, Brandsda BO (2002) Ligand binding affinities from MD simulatio, Acct Chem Res, 35: 358–365CrossRefGoogle Scholar
  49. 49.
    Vorobjev YN, Hermans J (2001) Free energies of protein decoys provide insight into determinants of protein stability, Protein Sci, 10: 2498–2506PubMedCrossRefGoogle Scholar
  50. 50.
    Vorobjev YN, Almagro JC, Hermans J (1998) Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model, Proteins, 32: 399–413PubMedCrossRefGoogle Scholar
  51. 51.
    Wallqvist A, Smythers GW, Covel DG (1997) Identification of cooperative folding units in a set of native proteins, Protein Sci, 6: 1627–42PubMedGoogle Scholar
  52. 52.
    Thirumalai D, Klimov DK, Woodson SA (1997) Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models, Theor Chem Acc, 96: 14–22Google Scholar
  53. 53.
    Sheinerman FB, Brooks III CL (1998) Molecular picture of folding of a small alpha/beta protein, Proc Natl Acad Sci USA, 95: 1562–7PubMedADSCrossRefGoogle Scholar
  54. 54.
    Nolting B, Andert K (2000) Mechanism of protein folding, Proteins, 41: 288–298PubMedCrossRefGoogle Scholar
  55. 55.
    Murphy KP, Bhakuni V, Xie D, Freire E (1992) Molecular basis of cooperativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates, J Mol Biol, 227: 293–306PubMedCrossRefGoogle Scholar
  56. 56.
    Moult J, Melamud E (2000) From fold to function, Curr Opin Struct Biol, 10: 384–9PubMedCrossRefGoogle Scholar
  57. 57.
    Lazaridis T, Karplus M (1997) ‘‘New view’’ of protein folding reconciled with the old through multiple unfolding simulations, Science, 278: 1928–1931PubMedADSCrossRefGoogle Scholar
  58. 58.
    Friedberg I, Margalit H (2002) Persistently conserved positions in structurally similar, sequence dissimilar proteins: roles in preserving protein fold and function, Protein Sci, 11: 350–360PubMedCrossRefGoogle Scholar
  59. 59.
    Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures, Proc Natl Acad Sci USA, 97: 10383–10388PubMedADSCrossRefGoogle Scholar
  60. 60.
    Honig B (1999) Protein folding: from the Levinthal paradox to structure prediction, J Mol Biol , 293: 283–293PubMedCrossRefGoogle Scholar
  61. 61.
    Dill KA (1990) Dominant forces in protein folding, Biochemistry, 29: 7133–55PubMedCrossRefGoogle Scholar
  62. 62.
    Dill KA and Chan HS (1997) From Levinthal to pathways to funnels, Nat Struct Biol, 4: 10–19PubMedCrossRefGoogle Scholar
  63. 63.
    Dokholyan NV, Shakhnovich EI (2001) Understanding hierarchical protein evolution from first principles, J Mol Biol, 312: 289–307PubMedCrossRefGoogle Scholar
  64. 64.
    Zhu H, Snyder M (2002) ‘Omic’ approaches for unraveling signaling networks, Curr Opin Cell Biol, 14: 173–179PubMedCrossRefGoogle Scholar
  65. 65.
    Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein-proteins complexes, Proc Natl Acad Sci USA, 99: 14116–14121PubMedADSCrossRefGoogle Scholar
  66. 66.
    Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review, Biophys J, 72: 1047PubMedGoogle Scholar
  67. 67.
    Swanson JMJ, Henchman RH, McCammon JA (2000) Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy, Biophys J, 86: 67–74Google Scholar
  68. 68.
    Simonson T, Archontis G, Karplus M (2002) Free energy simulations come of age: protein-ligand recognition, Acct Chem Res, 35: 430–437CrossRefGoogle Scholar
  69. 69.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham III TE(2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models, Acc Chem Res, 33: 889–897PubMedCrossRefGoogle Scholar
  70. 70.
    Moreira IS, Fernandes PA, Ramos MJ (2006) Computational alanine scanning mutagenesis – an improved methodological approach, J Comput Chem, In PressGoogle Scholar
  71. 71.
    Moreira IS, Fernandes PA, Ramos MJ (2007) Unravelling Hot Spots – a comprehensive computational mutagenesis study, Theor Chem Acc, 117: 99–113CrossRefGoogle Scholar
  72. 72.
    Janin J (1996) Quantifying biological specificity: the statistical mechanics of molecular recognition, Proteins, 25(4): 438–445CrossRefGoogle Scholar
  73. 73.
    Luo R, David L, Gilson MK (2002) Accelarated Poisson-Boltzmann calculations for static and dynamic systems, J Comput Chem, 23: 1244–1253PubMedCrossRefGoogle Scholar
  74. 74.
    Bjørn Brandsdal O, Österberg F, Almlöf M, Feierberg I, Luzhkov VB, and Åqvist J (2003) Free energy calculations and ligand binding advances in protein chemistry, 66: 123–158Google Scholar
  75. 75.
    Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J Comput Aided Mol Des, 8(3), 243–256CrossRefGoogle Scholar
  76. 76.
    Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J Comput Aided Mol Des, 11: 425–445PubMedCrossRefGoogle Scholar
  77. 77.
    Schapira M, Totrov M, Abagyan R (1999) Prediction of the binding energy for small molecules, peptides and proteins J Mol Recog, 12: 177–190Google Scholar
  78. 78.
    Gillis D, Rooman M (1996) Stability changes upon mutation of solvent-acessible residues in protein evaluated by database-derived potentials J Mol Biol, 257: 1112–1126CrossRefGoogle Scholar
  79. 79.
    Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions, J Mol Biol, 295: 337–356PubMedCrossRefGoogle Scholar
  80. 80.
    Jiang L, Gao Y, Mao F, Liu Z, Lai L (2002) Potential of mean force for protein-protein interaction studies, Proteins, 46(2): 190–196CrossRefGoogle Scholar
  81. 81.
    Moont G, Gabb HA, Stenberg MJ (1999) Use of pair potentials across protein interfaces in screening predicted docked complexes, Proteins, 35: 364PubMedCrossRefGoogle Scholar
  82. 82.
    Muegge I, Martin YC (1999) Atomtypes assigned by SMARTS rules. Problems with insufficient data in PDB for some atom types, J Med Chem, 42: 791–804PubMedCrossRefGoogle Scholar
  83. 83.
    Sippl MJ, Ortner M, Jaritz M, Lackner P, Flockner H (1996) Helmholtz free energies of atom pair interactions in proteins, Fold Des, 1: 289–298PubMedCrossRefGoogle Scholar
  84. 84.
    Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein-protein interfaces, Sci STKE, 219: 12–15Google Scholar
  85. 85.
    Böhm HJ, Stahl M (1999) Rapid empiring scoring functions in virtual screening applications, Med Chem Res, 9: 445–462Google Scholar
  86. 86.
    Oprea TI, Marshall GR (1998) Receptor based prediction of binding affinities, Perspect Drug Discov Des, 9: 35–41CrossRefGoogle Scholar
  87. 87.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PM (2002) Monte Carlo simulation of the peptide recognition at the consensus binding site of the constant fragment of the human immunoglobulin G: the energy landscape analysis of a hot spot at the intermolecular interface, Proteins, 48: 539–557PubMedCrossRefGoogle Scholar
  88. 88.
    Kollman PA (1998) Recent advances in structure-based ligand design using molecular mechanics and monte carlo methods, Pharm Res, 15: 368–370PubMedCrossRefGoogle Scholar
  89. 89.
    Lamb ML, Jorgensen WL (1997) Computational approaches to molecular recognition, Curr Opin Chem Biol, 1: 449–457PubMedCrossRefGoogle Scholar
  90. 90.
    Åqvist J, Marelius J (2001) The linear interaction energy method for predicting ligand binding free energies, Comb Chem High T Scr, 4: 613–626Google Scholar
  91. 91.
    Kollman PA (1993) Free energy calculations—applications to chemical and biochemical phenomena, Chem Rev, 93: 2395–2317CrossRefGoogle Scholar
  92. 92.
    Gouda H, Kuntz I, Case DA, Kollman PA (2002) Free energy calculations for theophylline binding to an RNA aptamer: comparison of MM-PBSA and thermodynamic integration methods, Biopolymers, 68: 16–34CrossRefGoogle Scholar
  93. 93.
    Kong XJ, Brooks III CL (1996) Lambda dynamics—a new approach to free energy calculations, J Chem Phys, 105: 2414–23ADSCrossRefGoogle Scholar
  94. 94.
    Banba S, Guo Z, Brooks III CL (2001) New free energy based methods for ligand binding from detailed structure-function to multiple ligand screening, In Free Energy Calculations in Rational Drug Design, NY: Kluwer Academic/Plenum Publishers, 195–223Google Scholar
  95. 95.
    Eriksson MAL, Pitera J, Kollman PA (1999) Prediction of the binding free energies of new TIBO-like HIV-1 reverse transcriptase using a combination of PROFEC, PB/SA, CMC/MD and free energy calculations, J Med Chem, 42: 868–881PubMedCrossRefGoogle Scholar
  96. 96.
    Archontis G, Simonson T, Karplus M (2001) Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations, Application to amino acid recognition by aspartyl-tRNA synthetase, J Mol Biol, 306(2): 307–327CrossRefGoogle Scholar
  97. 97.
    Moreira IS, Fernandes PA, Ramos MJ (2006) Hot spots computational identification – application to the complex formed between the hen egg-white lysozyme (HEL) and the antibody HyHEL-10, Int J Quantum Chem, 107: 299–310ADSCrossRefGoogle Scholar
  98. 98.
    Hu ZJ, Ma BY, Wolsfon H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces, Proteins, 39(4): 331–342CrossRefGoogle Scholar
  99. 99.
    Novotny J, Bruccoleri R, Saul F (1989) On the attribution of binding energy in antigen-antibody complexes MCPC 603, D1.3, and HyHEL-5, Biochemistry, 28: 4735PubMedCrossRefGoogle Scholar
  100. 100.
    Wilso C, Mace J, Agard D (1991) Computational method for the design of enzymes with altered substracte specificity, J Mol Biol, 220: 495CrossRefGoogle Scholar
  101. 101.
    Vadja S, Sippl M, Novotny J (1997) Empirical potentials and functions for protein folding and binding, Curr Opin Struct Biol, 7: 222–228CrossRefGoogle Scholar
  102. 102.
    Wallqvist A, Uller M (1994) A simplified amino acid potential for use in structure predictions of proteins, Proteins, 18: 267–280PubMedCrossRefGoogle Scholar
  103. 103.
    Covell DG, Wallqvist A (1997) Analysis of protein-protein interactions and the effects of amino acid mutations on their energetics. The importance of water molecules in the binding epitope, J Mol Biol, 269: 281–297PubMedCrossRefGoogle Scholar
  104. 104.
    Guillet V, Laphorn A, Hartley RW, Mauguen Y (1993) Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar, Structure, 1: 165–177PubMedCrossRefGoogle Scholar
  105. 105.
    Bhat TN, Bentley GA, Boulot G, Greene MI, Tello D, Dall’Acqua W, Souchon H, Schwarz FP, Mariuzza RA, Poljak RJ (1994) Bound water molecules and conformational stabilization help mediate an antigen-antibody association, Proc Natl Acad Sci USA, 9: 1089–1093CrossRefGoogle Scholar
  106. 106.
    Braden BC, Fields BA, Ysern X, Goldbaum FA, Dall’Acqua W, Schwartz FP, Poljak RJ, Mariuzza RA (1996) Crystal structure of an Fv-Fv idiotope-antiidiope complex at 1.9 Å resolution, J Mol Biol, 264: 137–151PubMedCrossRefGoogle Scholar
  107. 107.
    Sharp K, Honig B (1990) Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation, J Phys Chem, 94: 7684–7692CrossRefGoogle Scholar
  108. 108.
    Sharp K, Honig B (1991) Electrostatic interactions in macromolecules: theory and applications, Annu Rev Biophys Chem, 19: 301–332CrossRefGoogle Scholar
  109. 109.
    Ponder J, Richards F (1987) Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes, J Mol Biol, 193: 775PubMedCrossRefGoogle Scholar
  110. 110.
    Bash P, Singh U, Langridge R, Kollman PA (1987) Free energy calculations by computer simulation, Science, 236: 564PubMedADSCrossRefGoogle Scholar
  111. 111.
    Warshel A, Sussman F, Hwang J (1998) Evaluation of the catalytic free energies in genetically modified proteins, J Mol Biol, 201: 139CrossRefGoogle Scholar
  112. 112.
    Kortemme T, Morozov AV, Baker D (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes, J Mol Biol, 326: 1239–1259PubMedCrossRefGoogle Scholar
  113. 113.
    Moreira IS, Fernandes PA, Ramos MJ (2006) Detailed microscopic study of the full ZipA: FtsZ interface, 63: 811–21Google Scholar
  114. 114.
    Moreira IS, Fernandes PA, Ramos MJ (2006) Unravelling the importance of protein-protein interaction: application of a computational alanine scanning mutagenesis to the study of the IgG1: streptococcal protein G (c2 Fragment) complex, J Phys Chem B, 110: 10962PubMedCrossRefGoogle Scholar
  115. 115.
    Aqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design, Protein Eng, 7: 385–391PubMedCrossRefGoogle Scholar
  116. 116.
    Aqvist J (1996) Calculations of absolute binding free energies for charged ligands and effects of ling-range electrostatic interactions, J Comput Chem, 17: 1587–1597 Proteins, 63: 811Google Scholar
  117. 117.
    Hansson T, Marelius J, Åqvist J (1998) Ligand binding affinity prediction by linear interaction energy methods, J Comput Aided Mol Des, 12: 27–35PubMedCrossRefGoogle Scholar
  118. 118.
    Wang W, Wang J, Kollman PA (1999) What determines the van der Waals coefficient ß in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamic simulation, Proteins, 34: 395–402PubMedCrossRefGoogle Scholar
  119. 119.
    Gorse AD, Cready JE (1997) Molecular dynamics simulations of the docking of substituted N5-deazepterins to dihydrofolate reductase, Protein Eng, 10: 23–30PubMedCrossRefGoogle Scholar
  120. 120.
    Jones-Hertzog DK, Jorgensen WL (1997) Binding affinities for sulfonamide inhibitors with human thrombin using Monte Carlo simulations with a linear response method, J Med Chem, 40:1539–1549PubMedCrossRefGoogle Scholar
  121. 121.
    Ljungberg KB, Marelius J, Musil D, Svensson P, Norden B, Åqvist J (2001) Computaional modelling of inhibitor binding to human thrombin, Eur J Pharm Sci, 12: 441–446PubMedCrossRefGoogle Scholar
  122. 122.
    Lamb ML, Tirado-Rives J, Jorgensen WL (1999) Estimation of the binding affinities of FKBP12 inhibitors using a linear response method, Bioorg Med Chem, 7: 851–860PubMedCrossRefGoogle Scholar
  123. 123.
    Paulsen MD, Ornstein RL (1996) Binding free energy calculations for P450cam-substracte complexes, Protein Eng, 9: 567–571PubMedCrossRefGoogle Scholar
  124. 124.
    Sham YY, Chu ZT, Tao H, Warshel A (1996) Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease, Proteins, 39(4): 393–407Google Scholar
  125. 125.
    Smith PE, Pettit BM (1994) Modeling Solvent in Biomolecular Systems, J Phys Chem, 98: 9700CrossRefGoogle Scholar
  126. 126.
    Wall ID, Leach AR, Salt DW, Ford MG, Essex JW (1999) Binding constants of neuraminidase inhibitors: an investigation of the linear interaction energy method, J Med Chem, 42: 5142–5152PubMedCrossRefGoogle Scholar
  127. 127.
    Still WC, Tempczyk A, Hawley RC, Hendricksen TJ (1990) Semi-analytical treatment of solvation for molecular mechanics and dynamics, J Am Chem Soc, 112: 6189CrossRefGoogle Scholar
  128. 128.
    Zhou R, Friesner RA, Ghosh A, Rizzo RC, Jorgensen WL, Levy J (2001) New linear interaction method for binding affinity calculations using a continuum solvent mode, J Phys Chem B, 105: 10388–10397CrossRefGoogle Scholar
  129. 129.
    Wang W, Donini O, Reyes CM, Kollman PA(2001) Biomolecular simulations: recent developments in force field, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions, A Rev Biophys Biomol Struct, 30: 211–243CrossRefGoogle Scholar
  130. 130.
    Massova I, Kollman PA (1999) Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies, J Am Chem Soc, 121: 8133–8143CrossRefGoogle Scholar
  131. 131.
    Massova I, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding, Perspectives in drug discovery and design, 18: 113–135CrossRefGoogle Scholar
  132. 132.
    Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA, J Am Chem Soc, 123: 5221–5230PubMedCrossRefGoogle Scholar
  133. 133.
    Wang W, Kollman PA (2000) Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model, J Mol Biol, 303: 567–582PubMedCrossRefGoogle Scholar
  134. 134.
    Reyes CM, Kollman PA (2000) Investigating the binding specificity of U1A-RNA by computational mutagenesis, J Mol Biol, 295: 1–6PubMedCrossRefGoogle Scholar
  135. 135.
    Huo S, Massova I, Kollman PA (2002) Computational alanine scanning of the 1:1 human growth hormone-receptor complex, J Comput Chem, 23: 15–27PubMedCrossRefGoogle Scholar
  136. 136.
    Srinivasan J, Cheatham T, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of the DNA, RNA, and phosphoramidate-DNA helices, J Am Chem Soc, 120: 9401–9409CrossRefGoogle Scholar
  137. 137.
    Laitinen T, Kankare JA, Perakyla M (2004) Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody, Proteins, 55(1): 34–43CrossRefGoogle Scholar
  138. 138.
    Elder R, Ghosh A, Cardenas A (2002) Long time dynamics of complex systems, Acc chem Res, 35: 396–403CrossRefGoogle Scholar
  139. 139.
    Allan MP, Tildesley DJ (1987) Computer Simulations of Liquids, Clarendon Press Oxford Science PublicationsGoogle Scholar
  140. 140.
    Leach AR (1996) Molecular Modelling: Principles and Applications, Longman Addison Wesley Longman, EssexGoogle Scholar
  141. 141.
    Haile JM (1991) Molecular Dynamic Simulations, Wiley New YorkGoogle Scholar
  142. 142.
    Frenkel D, Smith B (1996) Undestanding Molecular Simulations, Academic Press Inc, San DiegoGoogle Scholar
  143. 143.
    van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics: methodology, applications and perspectives in chemistry, Angew Chem Int Ed, 29: 992CrossRefGoogle Scholar
  144. 144.
    Karplus M, Petsko GA (1990) Molecular Dynamics Simulations in Biology, Nature, 347: 631PubMedADSCrossRefGoogle Scholar
  145. 145.
    Becker OM, MacKerell Jr AD, Roux B, Watanabe M (2001) Computational Biochemistry and Biophysics, NY: Marcel-Dekker, Inc, 512Google Scholar
  146. 146.
    Allinger NL (1977) Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms, J Am Chem Soc, 99: 8127–8134CrossRefGoogle Scholar
  147. 147.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus MJ (1983) CHARMM: a program for macromolecular energy, minimization, dynamics calculations, J Comput Chem, 4: 187–217CrossRefGoogle Scholar
  148. 148.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins, J Phys Chem B, 102: 3586–3616CrossRefGoogle Scholar
  149. 149.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, organic molecules, J Am Chem Soc, 117: 5179–5197CrossRefGoogle Scholar
  150. 150.
    Kollman PA (1997) Computer Simulations of Biomolecular Systems, ed. WF van Gunsteren, PK Weiner, A Wilkinson, Leiden: ESCOMGoogle Scholar
  151. 151.
    Wang W, Donin O, Reyes CM, Kollman PA (2001) Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic, acid noncovalent interactions, Annu Rev Biophys Biomol Struct, 30: 211–243PubMedCrossRefGoogle Scholar
  152. 152.
    Kaminski G, Jorgensen WL (1996) Performance of the Amber94, Mmff94, and Opls-A a force fields for modeling organic liquids, J Phys Chem, 100: 18010–18013CrossRefGoogle Scholar
  153. 153.
    Niketic SR and Rasmussen K (1997) The consistent force field: a documentation. Lectures Notes in Chemistry 3, Springer-Verlag, p. 212 BerlinGoogle Scholar
  154. 154.
    Jònsdòttir SO, Welsh WJ, Rasmunnen K, Klein RA (1999) The critical role of force field in property prediction, New J Chem, 153–163Google Scholar
  155. 155.
    Halgren TA (1996) Merck molecular force field. I basis, form, scope, parameterization, and performance of Mmff94, J Comp Chem, 17: 490–519CrossRefGoogle Scholar
  156. 156.
    Halgren TA (1996) Merck molecular force field. II. Mmff94 van der Waals and electrostatic parameters for intermolecular interactions, J Comp Chem, 17: 520–552CrossRefGoogle Scholar
  157. 157.
    Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for Mmff94, J Comp Chem, 17: 553–586CrossRefGoogle Scholar
  158. 158.
    Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) UFF, a rule based full periodic table force field for molecular mechanics and molecular dynamics simulations, J Am Chem Soc, 114: 10024CrossRefGoogle Scholar
  159. 159.
    van Gunsteren WF (1987) GROMOS Groningen molecular simulation program package, Groningen: University of GroningenGoogle Scholar
  160. 160.
    Stocker U, van Gunsteren WL (2000) Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data, Proteins: Struct Funct Genet, 40: 145–531CrossRefGoogle Scholar
  161. 161.
    Ewig CS, Thacher TS, Hagler AT (1999) Derivation of class II force fields. VII. Nonbonded force field parameters for organic compounds, J Phys Chem B, 103: 6998–7014CrossRefGoogle Scholar
  162. 162.
    Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution, Comput Phys Commun, 91: 215–231ADSCrossRefGoogle Scholar
  163. 163.
    Engler EM, Andose JD and Schleyer PVR (1973) Critical evaluation of molecular mechanics, J Am Chem Soc, 95: 8005–8025CrossRefGoogle Scholar
  164. 164.
    Gundertofte K, Palm J, Pettersson I Stamvik A (1991) A comparison of conformational energies calculated by molecular mechanics (MM2(85), Sybyl 5.1, Sybyl 5.21, ChemX) and semiempirical (AM1 and PM3) methods, J Comp Chem, 12: 200–208CrossRefGoogle Scholar
  165. 165.
    Gundertofte K, Liljefors T, Norrby PO, Pattesson I (1996) Comparison of conformational energies calculated by several molecular mechanics methods, J Comp Chem, 17: 429–449CrossRefGoogle Scholar
  166. 166.
    Hall D, Pavitt N (1984) An appraisal of molecular force fields for the representation of polypeptides, J Comp Chem, 5: 441–450CrossRefGoogle Scholar
  167. 167.
    Hobza P, Kabelac M, Sponer J, Mejzlik P, Vondrasek J (1997) Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPS, POLTEV), semiemprical quantum chemical methods (AM1, MNDO/M, PM3) and ab initio Hartree-Fock method for interaction of DNA bases: comparison of nonempirical beyond Hartree-Fock results, J Comp Chem, 18: 1136–1150CrossRefGoogle Scholar
  168. 168.
    Kini RM, Evans HJ (1992) Comparison of protein models minimized by the all-atom and united atom models in the amber force field, J Biomol Structure and Dynamics, 10: 265–279Google Scholar
  169. 169.
    Roterman IK, Gibson KD, Scheraga HA (1989) A comparison of the CHARMM, AMBER, and ECEPP/2 potential for peptides I, J Biomol Struct Dynamics, 7: 391–419Google Scholar
  170. 170.
    Roterman IK, Lambert MH, Gibson KD, Scheraga HA (1989) A comparison of the CHARMM, AMBER, ECEPP/2 potential for peptides II, J Biomol Struct Dynamics, 7: 421–452Google Scholar
  171. 171.
    Whitlow M, Teeter MM (1986) A empirical examination of potential energy minimization using the well-determined structure of the protein crambin, J Am Chem Soc, 108: 7163–7172CrossRefGoogle Scholar
  172. 172.
    Mackerell Jr AD (2004) Empirical force fields for biological macromolecules: overview and issues, J Comput Chem, 25: 1584–1604PubMedCrossRefGoogle Scholar
  173. 173.
    Wang J, Wolf R, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field, J Comput Chem, 25: 1157–1174PubMedCrossRefGoogle Scholar
  174. 174.
    Agalarov SC, Prasad GS, Funke PM, Stout CD, Williamson Jr JR (2000) Structure of the S15,S18-rRNA complex: assembly of the 30S ribosome central domain, Science, 288: 107–112PubMedADSCrossRefGoogle Scholar
  175. 175.
    Alhambra C, Wu L, Zhang ZY, Gao JL (1998) Walden-inversion-enforced transition-state stabilization in a protein tyrosine phosphatase, J Am Chem Soc, 120: 3858–3866CrossRefGoogle Scholar
  176. 176.
    Cheatham TE, Cieplak P, Kollman PA (1999) A modified version of the Cornell et al force field with improved sugar pucker phases and helical repeat, J Biomol Struct, 16: 845–862Google Scholar
  177. 177.
    Foloppe N, Mackerell AD (2000) Allatom empirical force field for nucleic acids. I. Parameter optimization based on small molecule and condensed phase macromolecular target data, J Comp Chem, 21: 86–120CrossRefGoogle Scholar
  178. 178.
    Langley DR (1998) Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results, J Biomol Struct, 16: 487–509Google Scholar
  179. 179.
    Tapia O, Velasquez I (1997) Molecular Dynamics Simulations of DNA with Protein’s Consistent GROMOS Force Field and the Role of Counterions’ Symmetry, J Am Chem Soc, 119: 5934CrossRefGoogle Scholar
  180. 180.
    Roxstrom G, Velazquez I, Paulino M, Tapia O (1998) DNA structure and fluctuations sensed from a 1.1ns molecular dynamics trajectory of a fully charged Zif268-DNAcomplex in water, J Biomol Struct, 16: 301–312Google Scholar
  181. 181.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method, J Chem Phys, 103: 8577–8593ADSCrossRefGoogle Scholar
  182. 182.
    Beckers JVL, Lowe CP, DeLee SW (1998) An iterative PPPM method for simulating Coulombic systems on distributed memory parallel computers, Mol Simul, 20: 369–383zbMATHGoogle Scholar
  183. 183.
    Cheatham TE, Brooks BR (1998) Recent advances in molecular dynamics simulation towards the realistic representation of biomolecules in solution, Theor Chem Acc, 99: 279–288Google Scholar
  184. 184.
    Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature, Biophys J, 72: 2002–2013PubMedGoogle Scholar
  185. 185.
    Smondyrev AM, Berkowitz ML (2000) Molecular dynamics simulation of dipalmitoylphosphatidylcholine membrane with cholesterol sulphate, Biophys J, 78: 1672–1680PubMedGoogle Scholar
  186. 186.
    Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML (2001) Simulations of phospholipids using a coarse grain model, J Phys Chem B, 105: 9785–9792CrossRefGoogle Scholar
  187. 187.
    Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations, J Am Chem Soc, 125(37): 11144–11145CrossRefGoogle Scholar
  188. 188.
    Naidoo KJ, Brady JW(1999) Calculation of the Ramachandran potential of mean force for a disaccharide in aqueous solution, J Am Chem Soc, 121: 2244–2252CrossRefGoogle Scholar
  189. 189.
    Reiling S, Schlenkrich M, Brickmann J (1996) Force field parameters for carbohydrates, J Comp Chem, 17: 450–468CrossRefGoogle Scholar
  190. 190.
    Pathiaseril A, Woods RJ (2000) Relative energies of binding for antibody carbohydrate-antigen complexes computed from free-energy simulations, J Am Chem Soc, 122: 331–338PubMedCrossRefGoogle Scholar
  191. 191.
    Simmerling C, Fox T, Kollman PA (1998) Use of locally enhanced sampling in free energy calculations: testing and application to the alpha beta anomerization of glucose, J Am Chem Soc, 120: 5771–5782CrossRefGoogle Scholar
  192. 192.
    Dam W, Frontera A, Tirado-Rives J, Jorgensen WL (1997) OPLS all-atom force field for carbohydrates, J Comp Chem, 18: 1955–1970CrossRefGoogle Scholar
  193. 193.
    JM Wang, P Cieplak, PA Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comp Chem, 21: 1049–1074CrossRefGoogle Scholar
  194. 194.
    Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry, Science, 268: 1144–1149PubMedADSCrossRefGoogle Scholar
  195. 195.
    Davis ME, Mccammon JA (1990) Electrostatics in biomolecular structure and dynamics, Chem Rev, 90: 500–521CrossRefGoogle Scholar
  196. 196.
    Davis ME, McCammon JA (1991) Solving the finite-difference linearized Poisson-Boltzmann equation: a comparison of relaxation and conjugate gradient methods, J Comp Chem, 10: 386CrossRefGoogle Scholar
  197. 197.
    Bourne P, Weissig H, eds (2003) Structural Bioinformatics, Other Structure-Based Databases, NY: John Wiley & Sons, Inc, 427Google Scholar
  198. 198.
    Roux B, Simonson T (1999) Implicit solvent models, Biophys Chem, 78: 1–20PubMedCrossRefGoogle Scholar
  199. 199.
    Tsui V, Case DA (2001) Theory and applications of the generalized Born solvation model in macromolecular simulations, Biopolymers, 56: 275–291CrossRefGoogle Scholar
  200. 200.
    Moreira IS, Fernandes PA and Ramos MJ (2005) Accuracy of the numerical differentiation of the Poisson-Boltzmann equation, J Mol Struct (Theochem), 729: 11–18CrossRefGoogle Scholar
  201. 201.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized Born model, Proteins, 55: 383–394PubMedCrossRefGoogle Scholar
  202. 202.
    Jorgensen WL, Chandrasekhar J, Madura J , Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water, J Chem Phys, 79: 926–935ADSCrossRefGoogle Scholar
  203. 203.
    Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J Chem Phys, 112: 8910–8922ADSCrossRefGoogle Scholar
  204. 204.
    Berendsen HJC, Grigera JR, Stratsma TP (1987) The missing term in effective pair potentials, J Phys Chem, 91: 6269–6274CrossRefGoogle Scholar
  205. 205.
    Xia B, Tsui V, Case DA, Dyson J , Wright PE (2002) Comparison of protein solution structures refined by molecular dynamics simulations in vacuum, with a generalized Born model, and with explicit water, J Biomol NMR, 22: 317–331PubMedCrossRefGoogle Scholar
  206. 206.
    Shen M, Freed KF (2002) Long time dynamics of met-enkephalin: comparison of explicit and implicit solvent models, Biophys J, 82: 1791–1808Google Scholar
  207. 207.
    Cheatham III TE, Kollman PA (1996) Observation of the A DNA to B DNA transition during unrestrained molecular dynamics in aqueous solution, J Mol Biol, 259: 434–444PubMedCrossRefGoogle Scholar
  208. 208.
    Feig M, Onufriev A, Lee MS, Im W, Case DA, Brooks III CL (2004) Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures, J Comput Chem, 25: 265–284PubMedCrossRefGoogle Scholar
  209. 209.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome, Proc Natl Acad Sci USA, 98: 10037–10041PubMedADSCrossRefGoogle Scholar
  210. 210.
    Lipkowitz KB, Larter R, Cundari TR, eds (2003) Reviews in Computational Chemistry, The Poisson-Boltzmann Equation, Hoboken, NJ: John Wiley and Sons, Inc, 147Google Scholar
  211. 211.
    Wen EZ, Hsieh MJ, Kollman PA, Luo R (2004) Enhanced ab initio protein folding simulations in Poisson-Boltzmann molecular dynamics with self guiding forces, J Mol Graph Model, 22: 415–424PubMedCrossRefGoogle Scholar
  212. 212.
    Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model suitable for macromolecules, J Phys Chem B, 104: 3712CrossRefGoogle Scholar
  213. 213.
    Im W, Lee MS, Brooks III CL (2003) Generalized born model with a simple smoothing function, J Comput Chem, 24: 1691PubMedCrossRefGoogle Scholar
  214. 214.
    Bashford D, Case DA (2000) Generalized born models of macromolecular solvation effects, Annu Rev Phys Chem, 51: 129–152PubMedCrossRefGoogle Scholar
  215. 215.
    Wagoner J, Baker N (2004) Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models, J Comput Chem, 25: 1623–1629PubMedCrossRefGoogle Scholar
  216. 216.
    Nielsen JE, Andersen KV, Honig B, Hooft RW, Klebe G, Vriend G , Wade RC (1999) Improving macromolecular electrostatics calculations, Protein Eng, 12(8): 657–662CrossRefGoogle Scholar
  217. 217.
    Fogolari F, Brigo A, Molinari H (2002) The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology, J Mol Recognit, 15: 377–392PubMedCrossRefGoogle Scholar
  218. 218.
    Gouy M (1910) Sur la constitution de la charge électrique a la surface d’un électrolyte, J Phys, 9: 457–468Google Scholar
  219. 219.
    Chapman DL (1913) A contribution to the theory of electrocapillarity, Phill Mag, 25: 475–481Google Scholar
  220. 220.
    Nicholls A, Honig B (1991) Rapid finite difference alogrithm, utililizing successive over-relaxation to solve the Poisson-Boltzman equation, J Comput Chem, 12: 435–445CrossRefGoogle Scholar
  221. 221.
    Nicholls A, Sharp K, Honig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins, 11: 281–296PubMedCrossRefGoogle Scholar
  222. 222.
    Madura JD (1995) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics Program, Comput Phys Commun, 91: 57–95ADSCrossRefGoogle Scholar
  223. 223.
    Höfinger S, Simonson T(2000) Dielectric Relaxation in Proteins: A Continuum Electrostatic Model Incorporating Dielectric Heterogeneity of the Protein and Time-Dependent Charges, J Comput Chem, 22: 290CrossRefGoogle Scholar
  224. 224.
    Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis, Proteins Struct Funct Genet, 4: 7–18PubMedCrossRefGoogle Scholar
  225. 225.
    Gilson MK, Honig B (1988) Energetics of charge-charge interactions in proteins, Proteins Struct Funct Genet, 3: 32–52PubMedCrossRefGoogle Scholar
  226. 226.
    Demchuk E, Wade RC (1996) Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins, J Phys Chem, 100: 17373–17387CrossRefGoogle Scholar
  227. 227.
    Gallicchio E, Levy RM (2004) AGBNP, an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling, J Comput Chem, 25: 479–499PubMedCrossRefGoogle Scholar
  228. 228.
    Gallicchio E, Zhang LY, Levy RM (2002) The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel non-polar hydration free energy estimators, J Comput Chem, 23: 517–529PubMedCrossRefGoogle Scholar
  229. 229.
    Glattli A, Daura X , van Gunsteren WF (2003) A novel approach for designing simple point charge models for liquid water with three interaction sites, J Comput Chem, 24: 1087–1096PubMedCrossRefGoogle Scholar
  230. 230.
    Davies DR (1990) The structure and function of the aspartic proteinases, Annu Rev Biophys Chem, 19: 189–215CrossRefGoogle Scholar
  231. 231.
    Florian J, Warshel A (1997) Langevin dipoles model for Ab initio calculations of chemical processes in solution: parametrization and application to hydration free energies of neutral and ionic solutes, and conformational analysis in aqueous solution, J Phys Chem B, 101: 5583–5595CrossRefGoogle Scholar
  232. 232.
    Jayaram B, Sprous D, Beveridge DL (1998) Solvation free energy of biomacromolecules: parameters for a modified generalized born model consistent with the AMBER force field, J Phys Chem B, 102: 9571–9576CrossRefGoogle Scholar
  233. 233.
    Banavalli NK, Roux B (2002) J Phys Chem B, 106: 11026CrossRefGoogle Scholar
  234. 234.
    Nina M, Beglov D , Roux B (1997) Atomic Born radii for continuum electrostatic calculations based on molecular dynamics free energy simulations, J Phys Chem B, 101: 5239–5248CrossRefGoogle Scholar
  235. 235.
    Wesson L, Eisenberg D (1992) Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Sci, 1: 227–235PubMedCrossRefGoogle Scholar
  236. 236.
    Vorobjec YN, Hermans J (1990) ES/IS: estimation of conformational free energy by combining dynamic simulations with explicit solvent with an implicit solvent continuum model, Biophys Chem, 78: 195–205CrossRefGoogle Scholar
  237. 237.
    Dill KA (1997) Additivity principles in biochemistry, J Biol Chem, 272: 701–704PubMedGoogle Scholar
  238. 238.
    Mark AE, van Gunsteren WF (1994) Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies, J Mol Biol, 240: 167–176PubMedCrossRefGoogle Scholar
  239. 239.
    Wilson EB, Decius JC, Cross PC (1955) Molecular Vibrations, New York: McGraw-HillGoogle Scholar
  240. 240.
    Brooks BR, Janezic D, Karplus M (1995) Harmonic analysis of large sytems. I methodology, J Comput Chem, 16: 1522–1542CrossRefGoogle Scholar
  241. 241.
    Janezic D, Brooks BR (1995) Harmonic analysis of large system. II. Comparison of different protein models, J Comput Chem, 16: 1543–1553CrossRefGoogle Scholar
  242. 242.
    Janezic D, Venable RM, Brooks BR (1995) Harmonic analysis of large system. III. Comparison with molecular dynamics, J Comput Chem, 16: 1554–1566CrossRefGoogle Scholar
  243. 243.
    Roccatano D, Amadei A, Apol MEF, Nola AD, Berendsen HJC (1998) Application of the quasi-Gaussian entropy theory to molecular dynamic simulation of Lennard-jones fluids, J Chem Phys, 109: 6358–6363ADSCrossRefGoogle Scholar
  244. 244.
    Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models, J Med Chem, 43(20): 3786–3791CrossRefGoogle Scholar
  245. 245.
    Rocchia W, Sridharan S , Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based construction of the molecular surface for both molecules and geometric objects: applications to the finite difference Poisson-Boltzmann method, J Comp Chem, 23: 128–137CrossRefGoogle Scholar
  246. 246.
    Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions, J Phys Chem B, 105: 6507–6514CrossRefGoogle Scholar
  247. 247.
    Connolly ML (1983) Analytical molecular surface calculation, J Appl Cryst, 16: 548–558CrossRefGoogle Scholar
  248. 248.
    Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery, J Med Chem, 48: 4040–4048PubMedCrossRefGoogle Scholar
  249. 249.
    Chong LT, Duan Y, Wang L, Massova I, Massova PA (1999) Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7, Proc Natl Acad Sci USA, 96(25): 14330–14335ADSCrossRefGoogle Scholar
  250. 250.
    Lee TS, Kollman PA (2000) Theoretical studies suggest a new antifolate as a more potent inhibitor of thymidylate synthase, J Am Chem Soc, 122: 4385–93CrossRefGoogle Scholar
  251. 251.
    Lee MR, Duan Y, Kollman PA (2000) Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece, Proteins, 39(4): 309–316CrossRefGoogle Scholar
  252. 252.
    Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf, J Comput Chem, 25(2): 238–250CrossRefGoogle Scholar
  253. 253.
    Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2001) Hierarchy of simulation models in predicting molecular recognition mechanisms from the binding energy landscapes: structural analysis of the peptide complexes with SH2 domains, Proteins, 45(4): 456–470CrossRefGoogle Scholar
  254. 254.
    Verkhivker GM, Bouzida D, Gehlhaar DK , Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V , BA Marrone T, Rose PW (2000) Deciphering common failures in molecular docking of ligand-protein complexes, J Comput Aided Mol Des, 14(8): 731–751CrossRefGoogle Scholar
  255. 255.
    Bouzida D, Gehlhaar DK, Rejto PA, Schaffer L, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Rose PW, Verkhivker GM (1999) Computer simulations of ligand-protein binding with ensembles of protein conformations: a Monte Carlo study of HIV-1 protease binding energy landscapes, Int J Quantum Chem, 73: 73–84CrossRefGoogle Scholar
  256. 256.
    Bouzida D, Rejto PA, Verkhivker GM(1999) Monte Carlo simulations of ligand-protein binding energy landscapes with the weighted histogram analysis method, Int J Quantum Chem, 73: 113–121CrossRefGoogle Scholar
  257. 257.
    Verkhivker GM, Rejto PA, Bouzida D, Arthurs S, Colson AB, Freer ST, Gehlhaar DK, Larson V, Luty BA, Marrone T, Rose PW (1999) Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions, J Mol Recognit, 12(6): 371–389CrossRefGoogle Scholar
  258. 258.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Chio C, Alagona G, Profeta S, Weiner PA (1984) A new force field for molecular mechanical simulation of nucleic acid and proteins, J Am Chem Soc, 106: 765–784CrossRefGoogle Scholar
  259. 259.
    Weiser J, Weiser AA, Shenkin PS, Still WC (1998) Neighbour-list reduction: optimization for computation of molecular van der Waals and solvent accessible surface areas, J Comput Chem, 19: 797–808CrossRefGoogle Scholar
  260. 260.
    Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO), J Comput Chem, 20: 217–230CrossRefGoogle Scholar
  261. 261.
    Weiser J, Shenkin PS, Still WC (1999), Fast, approximate algorithm for detection of solvent-inacessible atoms, J Comput Chem, 20: 586–596CrossRefGoogle Scholar
  262. 262.
    Tsui V, Case DA (2002) Molecular dynamic simulations of nucleic acids with a generalized born solvation model, J Am Chem Soc, 122: 2489–2498CrossRefGoogle Scholar
  263. 263.
    Qiu D, Shenkin PS, Hollinger FP, Still WC (1997) The GB/SA continuum model for solvation: a fast analytical method for the calculation of approximate born radii, J Phys Chem A, 101: 3005–3014CrossRefGoogle Scholar
  264. 264.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics, J Am Chem Soc, 112: 6127–6129CrossRefGoogle Scholar
  265. 265.
    Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) MacroModel – an integrated software system for modelling organic and bioorganic molecules using molecular mechanics, J Comput Chem, 11: 440–467CrossRefGoogle Scholar
  266. 266.
    Beveridge DL, Dicapua FM (1989) Free energy via molecular simulations: application to chemical and biochemical sytems, Annu Rev Biopys Chem, 18: 431–492CrossRefGoogle Scholar
  267. 267.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures, J Chem Phys, 3: 300–313CrossRefGoogle Scholar
  268. 268.
    Zwanzig RW (1954) High temperature equation of state by a perturbation method. I. nonpolar gases, J Chem Phys, 22: 1420–1426CrossRefGoogle Scholar
  269. 269.
    Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: application to the subcritical Lennard-Jones fluid, Chem Phys Lett, 28: 578–581ADSCrossRefGoogle Scholar
  270. 270.
    Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free energy estimation: umbrella sampling, J Comp Phys, 23: 187–199ADSCrossRefGoogle Scholar
  271. 271.
    Postma JPM, Berendsen HJC, Haak JR, Faraday (1982), Thermodynamics of cavity formation in water: a molecular dynamics study, Symp Chem Soc, 17: 55–67CrossRefGoogle Scholar
  272. 272.
    Warshel A (1982) Dynamics of reactions in polar solvent. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions, J Phys Chem, 86: 2218–2224CrossRefGoogle Scholar
  273. 273.
    Mezei M, Swaminathan S, Beveridge DL (1978) Ab initio calculation of the free energy of liquid water, J Am Chem Soc, 100: 3255–3256CrossRefGoogle Scholar
  274. 274.
    Lopez MA, Kollman PA (1993) Application of molecular dynamics and free energy perturbation methods to metalloporphyrin-ligand systems II: CO and dioxygen bynding to myoglobin, Protein Sci, 2: 1975–1986PubMedGoogle Scholar
  275. 275.
    Boresh S, Archontis G, Karplus M (1994) Free energy simulations: the meaning of the individual contributions from a component analysis, Proteins, 20: 25–33CrossRefGoogle Scholar
  276. 276.
    Guo Z, Brooks CL, Kong X (1998) Efficient and flexible algorithm for free energy calculations using the lambda-dynamics approach, J Phys Chem B, 102: 2032–36CrossRefGoogle Scholar
  277. 277.
    Guo ZY, Brooks CL (1998) Rapid screening of binding affinities: application of the lambda-dynamics method to a trypsin-inhibitor system, J Am Chem Soc, 120: 1920–21CrossRefGoogle Scholar
  278. 278.
    Liu HY, Mark AE, Van Gunsteren WF (1996) Estimating the relative free energy of different molecular states with respect to a single reference state, J Phys Chem, 100: 9485–94CrossRefGoogle Scholar
  279. 279.
    Pitera JW, Kollman PA (2000) Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides, Proteins, 41: 385–397PubMedCrossRefGoogle Scholar
  280. 280.
    Pitera J, Kollman PA (1998) Designing na optimum guest for a host using multimolecule free energy calculations: predicting the best ligand for Rebek’s ‘‘tennis ball’’, J Am Chem Soc, 120: 7557–67CrossRefGoogle Scholar
  281. 281.
    Hansson T, Aqvist J (1995) Estimation of binding free energies for HIV protease inhibitors by molecular dynamic simulations, Protein Eng, 8: 1137–1144PubMedCrossRefGoogle Scholar
  282. 282.
    Archontis G, Simonson T, Moras D, Karplus M (1998) Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulation, J Mol Biol, 275: 823–846PubMedCrossRefGoogle Scholar
  283. 283.
    Gao J, Kuczer K, Tidor B, Karplus M (1989) Hidden I thermodynamic of mutant proteins: a molecular dynamics analysis, Science, 244: 1069–1072PubMedADSCrossRefGoogle Scholar
  284. 284.
    Warwicker J, Watson H (1982) Calculation of the electrostatic potential in the active site cleft due to α helix dipoles, J Mol Biol, 571: 671CrossRefGoogle Scholar
  285. 285.
    Rogers N (1986) The modelling of the electrostatic interactions in the function of globular proteins, Prog Biophys Mol Biol, 48: 37–66PubMedCrossRefGoogle Scholar
  286. 286.
    Gilson M, Honig B (1988) Calculating electrostatic interactions in bio-molecules: method an error assessment, J Comp Chem, 9: 327–335CrossRefGoogle Scholar
  287. 287.
    Hendsch Z, Tidor B (1999) Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding, Protein Sci, 8: 1381–1392PubMedCrossRefGoogle Scholar
  288. 288.
    Olson M, Reinke LT (2000) Modelling Implicit reorganization in continuum descriptions of protein-protein interactions, Proteins, 38: 115–119PubMedCrossRefGoogle Scholar
  289. 289.
    Radmer RJ, Kollman PA (1998) The application of three approximate free energy calculations methods to structure based ligand design: trypsin and its complex with inhibitors, J Comput Aided Mol Des, 12: 215–227PubMedCrossRefGoogle Scholar
  290. 290.
    Pearlman DA (1999) Free energy grids: a practical qualitative application of free energy perturbation to ligand design using the OWFEG method, J Med Chem, 42: 4313PubMedCrossRefGoogle Scholar
  291. 291.
    McCammon JA (1991) Free energy from simulations, Curr Opin Struct Biol, 1: 196CrossRefGoogle Scholar
  292. 292.
    Tidor B (1993) Simulated annealing on free energy surfaces by a combined molecular dynamics and monte carlo approach, J Phys Chem, 97: 1069–1073CrossRefGoogle Scholar
  293. 293.
    Tidor B (1993) Simulated annealing on free energy surfaces by a combined molecular dynamics and Monte-Carlo approach, J Phys Chem, 97: 1069–73CrossRefGoogle Scholar
  294. 294.
    Banba S, Guo Z, Brooks III CL (2000) Are many-body effects important in protein folding? J Phys Chem B, 104: 6903CrossRefGoogle Scholar
  295. 295.
    Banba S, Brooks CL (2000) Energetic frustration and the nature of the transition state in protein folding, J Chem Phys, 113: 3423–3433ADSCrossRefGoogle Scholar
  296. 296.
    Jarque C, Tidor B (1997) Simulated annealing on coupled free energy surfaces: relative solvation energies of small molecules, J Phys Chem B, 101: 9362–9374CrossRefGoogle Scholar
  297. 297.
    Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method, Proteins: Struct Funct Genet, 11(1): 29–34Google Scholar
  298. 298.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data, J Comp Phys, 22: 245–268ADSCrossRefGoogle Scholar
  299. 299.
    Metropolis NA, Rosenbluth AW, Teller AH , Teller E (1953) Generalizing Swendsen-Wang to sampling – arbitrary posterior probabilities, J Chem Phys, 21: 1087CrossRefGoogle Scholar
  300. 300.
    Jorgensen WL (1988) Energy profiles for organic reactions in solution, Adv Chem Phys, 70: 469CrossRefGoogle Scholar
  301. 301.
    Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins, Energy minimizations for crystals of cyclic peptides and crambin, J Am Chem Soc, 110: 1657CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.REQUIMTE/Departamento de QuìmicaFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations