Skip to main content

Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species

  • Chapter
Book cover Living Rivers: Trends and Challenges in Science and Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 187))

  • 1026 Accesses

Abstract

Past research has provided compelling evidence that variation in flooding duration is the predominant factor underlying plant species distribution along elevation gradients in river floodplains. The role of seasonal variation in flooding, however, is far from clear. We addressed this seasonal effect for 10 grassland species by testing the hypothesis that all species can survive longer when flooded in winter than when flooded in summer. We carried out an inundation experiment under simulated conditions of summer and winter flooding in the greenhouse. The results showed that all species survived longer under winter floods than under summer floods. However, responses upon flooding were species-specific. All summer floodtolerant species had high tolerance for winter floods as well, but summer flood sensitive species survived either a little longer, or dramatically longer when flooded under simulated winter conditions. Next, we examined whether winter or summer survival best predicted the lower distribution limits of the species as measured in a natural flooding gradient after an extremely long winter flood. We found a strong significant relationship between the lower distribution limits of species in the field and their tolerance to summer floods, although we measured the lower limits 14 years after the latest major summer flood. In contrast, no such significant relationship existed with species tolerance to winter floods. Some relatively intolerant species occurred at much higher floodplain elevations as was expected from their tolerance to winter inundation in the experiments. This suggests that zonation patterns as created by occasional summer floods may be maintained for a long time, probably due to the limited ability of species to re-colonise lower positions in the floodplain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Breen, C. M., K. H. Rogers & P. J. Ashton, 1988. Vegetation processes in swamps and flooded plains. In Symoens, J. J. (ed.), Vegetation of Inland Waters Handbook of Vegetation Science 15/1. Kluwer Acadamic Publishers, Dordrecht: 223–247.

    Google Scholar 

  • Burke, M. J. W. & J. P. Grime, 1996. An experimental study of plant community invisibility. Ecology 77: 776–790.

    Article  Google Scholar 

  • Carter, M. F. & J. B. Grace, 1990. Relationships between flooding tolerance, life history, and short-term competitive performance in three species of Polygonum. American Journal of Botany 77: 381–387.

    Article  Google Scholar 

  • Collins, S. L., S. M. Glenn & D. J. Gibson, 1995. Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology 76: 486–492.

    Article  Google Scholar 

  • Crawford, R. M. M., 2003. Seasonal difference in plant responses to flooding and anoxia. Canadian Journal of Botany 81: 1224–1246.

    Article  CAS  Google Scholar 

  • Crawford, R. M. M., C. E. Jeffree & W. G. Rees, 2003. Paludification and forest retreat in northern oceanic environments. Annals of Botany 91: 213–226.

    Article  PubMed  Google Scholar 

  • Day, R. T., P. A. Keddy, J. McNeil & T. Carleton, 1988. Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69: 1044–1054.

    Article  Google Scholar 

  • He, J. B., G. M. Bögemann, H. M. van de Steeg, J. H. G. M. Rijnders, L. A. C. J. Voesenek & C. W. P. M. Blom, 1999. Survival tactics of Ranunculus species in river floodplains. Oecologia 118: 1–8.

    Article  Google Scholar 

  • Henry, C. P., C. Amoros & G. Bornette, 1996. Species traits and recolonization processes after flood disturbances in riverine macrophytes. Vegetatio 122: 13–27.

    Article  Google Scholar 

  • Johnson, C. M., P. R. Stout, T. C. Broyer & A. B. Carlton, 1957. Comparative chlorine requirements of different plants species. Plant and Soil 8: 337–353.

    Article  CAS  Google Scholar 

  • Klimesová, J., 1994. The effects of timing and duration of floods on growth of young plants of Phalaris arundinacea L. and Urtica dioica L: an experimental study. Aquatic Botany 48: 21–29.

    Article  Google Scholar 

  • Laan, P. & C. W. P. M. Blom, 1990. Growth and survival responses of Rumex species to flooding and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany 41: 775–783.

    Article  Google Scholar 

  • Lenssen, J. P. M. & H. de Kroon, 2005. Abiotic constraints at the upper boundaries of two Rumex species on a freshwater flooding gradient. Journal of Ecology 93: 138–147.

    Article  Google Scholar 

  • McCullagh, P. & J. A. Nelder, 1991. Generalized Linear Models. Chapman & Hall, New York.

    Google Scholar 

  • Mommer, L., H. de Kroon, R. Pierik, G.M. Bögemann & E. J.W. Visser, 2005.Afunctional comparison of acclimation to shade and submergence in two terrestrial plant species. New Phytologist 167: 197–206.

    Article  PubMed  Google Scholar 

  • Nabben, R. H. M., 2001. Metabolic adaptations to floodinginduced oxygen deficiency and post-anoxia stress in Rumex species. PhD Thesis, University of Nijmegen.

    Google Scholar 

  • Nilsson, C., M. Gardfjell & G. Grelsson, 1991. Importance of hydrochory in structuring plant communities along rivers. Canadian Journal of Botany 69: 2631–2633.

    Article  Google Scholar 

  • Pedersen, O., J. Borum, C. M. Duarte & M. D. Fortes, 1998. Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Marine Ecology-Progress Series 169: 283–288.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & H. Frost-Christensen, 1999. Plant growth and photosynthesis in the transition zone between land and stream. Aquatic Botany 63: 23–35.

    Article  CAS  Google Scholar 

  • SAS Institute, 2001. SAS Version 8.2. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Setter, T. L., M. Ellis, E. V. Laureles, E. S. Ella, D. Senadhira, S. B. Mishra, S. Sarkarung & S. Datta, 1997. Physiology and genetics of submergence tolerance in rice. Annals of Botany 79: 67–77.

    Article  CAS  Google Scholar 

  • Siebel, H. N., 1998. Floodplain forest restoration. Tree seedling establishment and tall herb interference in relation to flooding and shading. PhD Thesis, University of Nijmegen.

    Google Scholar 

  • Squires, L. & A. G. van der Valk, 1992. Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Canadian Journal of Botany 70: 1860–1867.

    Article  Google Scholar 

  • Studer-Ehrensberger, K., C. Studer & R. M. M. Crawford, 1993. Competition at community boundaries: mechanisms of vegetation structure in a dune-slack complex. Functional Ecology 7: 156–168.

    Article  Google Scholar 

  • Sykora, K. V., E. Scheper & F. van der Zee, 1988. Inundation and the distribution of plant communities on Dutch river dikes. Acta Botanica Neerlandica 37: 279–290.

    Google Scholar 

  • Van der Sman, A. J. M., N. Joosten & C. W. P. M. Blom, 1993. Flooding regimes and life history characteristics of shortlived species in river forelands. Journal of Ecology 81: 121–130.

    Article  Google Scholar 

  • Van Eck, W. H. J. M., J. P. M. Lenssen, R. H. J. Rengelink, C. W. P. M. Blom & H. de Kroon, 2005a. Water temperature instead of acclimation stage and oxygen concentration determines responses to winter floods. Aquatic Botany 81: 253–264.

    Article  Google Scholar 

  • Van Eck, W. H. J. M., H. M. van de Steeg, C. W. P. M. Blom & H. de Kroon, 2004. Is tolerance to summer flooding correlated with distribution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Oikos 107: 393–405.

    Article  Google Scholar 

  • Van Eck, W. H. J. M., H. M. van de Steeg, C. W. P. M. Blom & H. de Kroon, 2005b. Recruitment limitation along disturbance gradients in river floodplains. Journal of Vegetation Science 16: 103–110.

    Article  Google Scholar 

  • Vervuren, P. J. A., S. M. J. H. Beurskens & C. W. P. M. Blom, 1999. Light acclimation, CO2 response and longterm capacity of underwater photosynthesis in three terrestrial plant species. Plant, Cell and Environment 22: 959–968.

    Article  Google Scholar 

  • Vervuren, P. J. A., C. W. P. M. Blom & H. de Kroon, 2003. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology 91: 135–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer2006

About this chapter

Cite this chapter

van Eck, W.H.J.M., Lenssen, J.P.M., van de Steeg, H.M., Blom, C.W.P.M., de Kroon, H. (2006). Seasonal dependent effects of flooding on plant species survival and zonation: a comparative study of 10 terrestrial grassland species. In: Leuven, R.S.E.W., Ragas, A.M.J., Smits, A.J.M., van der Velde, G. (eds) Living Rivers: Trends and Challenges in Science and Management. Developments in Hydrobiology, vol 187. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5367-3_4

Download citation

Publish with us

Policies and ethics