Skip to main content

GROUP STRUCTURE OF ELLIPTIC CURVES OVER FINITE FIELDS AND APPLICATIONS

  • Chapter
Book cover Topics in Geometry, Coding Theory and Cryptography

Part of the book series: Algebra and Applications ((AA,volume 6))

  • 1689 Accesses

Abstract

Let E be an elliptic curve defined over Fq, the finite field of q elements. It is known that the set of F q-rational points of E has a structure of an abelian group. This fact, since the works of Koblitz [68] and Miller [98], underlies all known applications of elliptic curves to cryptography, see [3, 15, 16, 50, 73] and references therein. We give a survey of recent results about the structure of this group as well as techniques used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman, C. Pomerance and R. S. Rumely, “On distinguishing prime numbers from composite numbers”, Annals Math, Vol. 117, 173–206 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Akbary, C. David and R. Juricevic, “Average distributions and product of L-series”, Acta Arith., Vol. 111, 239–268 (2004).

    MATH  MathSciNet  Google Scholar 

  3. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange and K. Nguyen, Elliptic and hyperelliptic curve crytography: Theory and practice, CRC Press, 2005.

    Google Scholar 

  4. R. Balasubramanian and N. Koblitz, “The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm”, J. Cryptology, Vol. 11, 141–145 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Balasubramanian and M. R. Murty, “Elliptic pseudoprimes”, Sémin. Théor. Nombres, Paris 1988–89, Birkhäuser, Boston, MA, Prog. Math., Vol. 91, 13–25 (1990).

    Google Scholar 

  6. W. D. Banks, J. B. Friedlander, M. Garaev and I. E. Shparlinski, “Double character sums over elliptic curves and finite fields”, Pure and Appl. Math. Quart., Vol. 2., 179–197 (2006).

    MathSciNet  MATH  Google Scholar 

  7. W. Banks and I. E. Shparlinski, “Average normalizations of elliptic curves”, Bull. Austral. Math. Soc., Vol. 66, 353–358 (2002).

    MATH  MathSciNet  Google Scholar 

  8. P. S. L. M. Barreto, B. Lynn and M. Scott, “Elliptic curves with prescribed embedding degrees”, Lect. Notes in Comp. Sci., Vol. 3006, 17–25 (2003).

    MathSciNet  Google Scholar 

  9. P. S. L. M. Barreto, B. Lynn and M. Scott, “Efficient implementation of pairing-based cryptosystems”, J. Cryptology, Vol. 17, 297–319 (2004).

    Article  MathSciNet  Google Scholar 

  10. P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order”, Lect. Notes in Comp. Sci., Vol. 3897, 319–331 (2006).

    MathSciNet  Google Scholar 

  11. J. Battista, J. Bayless, D. Ivanov and K. James, “Average Frobenius distributions for elliptic curves with nontrivial rational torsion”, Acta Arith., Vol. 119, 81–91 (2005).

    MATH  MathSciNet  Google Scholar 

  12. P. Beelen and J. Doumen, “Pseudorandom sequences from elliptic curves”, Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, Springer-Verlag, Berlin, 37–52 (2002).

    Google Scholar 

  13. B. J. Birch, “How the number of points of an elliptic curve over a fixed prime field varies”, J. Lond. Math. Soc., Vol. 43, 57–60 (1968).

    MATH  MathSciNet  Google Scholar 

  14. I. F. Blake, V. K. Murty and G. Xu, “Refinements of Miller’s algorithm for computing the Weil/Tate pairing”, J. Algorithms, Vol. 58, 134–149 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  15. I. F. Blake, G. Seroussi and N. Smart, Elliptic curves in cryptography, London Math. Soc., Lecture Note Series, Vol. 265, Cambridge Univ. Press, 1999.

    Google Scholar 

  16. I. F. Blake, G. Seroussi and N. Smart, Advances in elliptic curves in cryptography, London Math. Soc., Lecture Note Series, Vol. 317, Cambridge Univ. Press, 2005.

    Google Scholar 

  17. E. Bombieri, “On exponential sums in finite fields”, Amer. J. Math., Vol. 88, 71–105 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, SIAM J. Comp., Vol. 32, 586–615 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Boneh, B. Lynn and H. Shacham, “Short signatures from the Weil pairing”, J. Cryptology, Vol. 17, 297–319 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Borosh, C.J. Moreno and H. Porta, “Elliptic curves over finite fields, II”, Math. Comp., Vol. 29, 951–964 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Bosma, “Signed bits and fast exponentiation”, J. Théorie des Nombres Bordeaux, Vol. 13, 27–41 (2001).

    MATH  MathSciNet  Google Scholar 

  22. F. Brezing and A. Weng, “Elliptic curves suitable for pairing based cryptography”, Designs, Codes and Cryptography, Vol. 37, 133–141 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Ciet, J.-J. Quisquater and F. Sica, “Elliptic curve normalization”, Crypto Group Technical Report Series CG-2001/2, Univ. Catholique de Louvain, Belgium, 1–13 (2001).

    Google Scholar 

  24. A. Cojocaru, “On the cyclicity of the group of Fp-rational points of non-CM elliptic curves”, J. Number Theory, Vol. 96, 335–350 (2002).

    MATH  MathSciNet  Google Scholar 

  25. A. Cojocaru, “Cyclicity of CM elliptic curves modulo p”, Trans. Amer. Math. Soc., Vol. 355, 2651–2662 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Cojocaru, “Questions about the reductions modulo primes of an elliptic curve”, Proc. 7th Meeting of the Canadian Number Theory Association (Montreal, 2002), CRM Proceedings and Lecture Notes, Vol. 36, Amer. Math. Soc., 61–79 (2004).

    MATH  MathSciNet  Google Scholar 

  27. A. Cojocaru, “Reductions of an elliptic curve with almost prime orders”, Acta Arith., Vol. 119, 265–289 (2005).

    MATH  MathSciNet  Google Scholar 

  28. A. Cojocaru and W. Duke, “Reductions of an elliptic curve and their Tate-Shafarevich groups”, Math. Annalen, Vol. 329, 513–534 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Cojocaru, E. Fouvry and M. R. Murty, “The square sieve and the Lang-Trotter conjecture”, Canadian J. Math., Vol 57, 1155–1177, (2005).

    MATH  MathSciNet  Google Scholar 

  30. A. Cojocaru and M. R. Murty, “Cyclicity of elliptic curves modulo p and elliptic curve analogues of Linnik’s problem”, Math. Annalen, Vol. 330, 601–625 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  31. P. Corvaja and U. Zannier, “A lower bound for the height of a rational function at S-unit points”, Monatsh. Math., Vol. 144, 203–224 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Crandall and C. Pomerance, Prime numbers: A computational perspective, Springer- Verlag, New York, 2005.

    MATH  Google Scholar 

  33. C. David, H. Kisilevsky and F. Pappalardi, “Galois representations with non-surjective traces”, Canad. J. Math., Vol. 51, 936–951 (1999).

    MATH  MathSciNet  Google Scholar 

  34. C. David and F. Pappalardi, “Average Frobenius distribution of elliptic curves”, Internat. Math. Res. Notices, Vol. 4, 165–183 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  35. C. David and F. Pappalardi, “Average Frobenius Distribution for inerts in Q(i)”, J. Ramanujan Math. Soc., Vol. 19, 1–21 (2004).

    MathSciNet  Google Scholar 

  36. M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Hansischen Univ., Vol. 14, 197–272 (1941).

    MATH  MathSciNet  Google Scholar 

  37. C. Doche, K. Ford and I. E. Shparlinski, “On finite fields with Jacobians of small exponent”, preprint, 2005.

    Google Scholar 

  38. W. Duke, “Almost all reductions modulo p of an elliptic curve have a large exponent”, Comptes Rendus Mathematique, Vol. 337, 689–692 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Dupont, A. Enge and A. Morain, “Building curves with arbitrary small MOV degree over finite prime fields”, J. Cryptology, Vol. 18, 79–89 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  40. N. Elkies, Supersingular primes of a given elliptic curve over a number field, PhD thesis, Harvard University, 1987.

    Google Scholar 

  41. N. Elkies, “Distribution of supersingular primes”, Astérisque, No. 198–200, 127–132 (1991).

    Google Scholar 

  42. P. Erdös and R. Murty, “On the order of a (mod p)”, Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 87–97 (1999).

    Google Scholar 

  43. J.-H. Evertse, “An improvement of the quantitative subspace theorem”, Compos. Math., Vol. 101, 225–311 (1996).

    MATH  MathSciNet  Google Scholar 

  44. J.-H. Evertse and H. P. Schlickewei, “A quantitative version of the absolute subspace theorem”, J. Reine Angew. Math., Vol. 548, 21–127 (2002).

    MATH  MathSciNet  Google Scholar 

  45. K. Ford and I. E. Shparlinski, “On finite fields with Jacobians of small exponent”, preprint, 2005.

    Google Scholar 

  46. E. Fouvry and M. R. Murty, “On the distribution of supersingular primes”, Canad. J. Math., Vol. 48, 81–104 (1996).

    MATH  MathSciNet  Google Scholar 

  47. J. B. Friedlander, C. Pomerance and I. E. Shparlinski, “Finding the group structure of elliptic curves over finite fields”, Bull. Aust. Math. Soc., Vol. 72, 251–263 (2005).

    MATH  MathSciNet  Google Scholar 

  48. S. D. Galbraith and J. McKee, “The probability that the number of points on an elliptic curve over a finite field is prime”, J. London Math. Soc., Vol. 62, 671–684 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  49. S. D. Galbraith, J.McKee and P.Valenca, “Ordinary abelian varieties having small embedding degree”, Proc. Workshop on Math. Problems and Techniques in Cryptology, CRM, Barcelona, 29–45 (2005).

    Google Scholar 

  50. S. D. Galbraith and A. Menezes, “Algebraic curves and cryptography”, Finite Fields and Their Appl., Vol. 11, 544–577 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  51. E.-U. Gekeler, “Frobenius distributions of elliptic curves over finite prime fields”, Int. Math. Res. Notes, Vol. 2003, 1999–2018 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  52. D. M. Gordon, “On the number of elliptic pseudoprimes”, Math. Comp., Vol. 52, 231–245 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  53. D. Gordon and C. Pomerance, “The distribution of Lucas and elliptic pseudoprimes”, Math. Comp., Vol. 57, 825–838 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  54. C. Günther, T. Lange and A. Stein, “Speeding up the arithmetic on Koblitz curves of genus two”, Lect. Notes in Comp. Sci., Vol. 2012, 106–117 (2001).

    MATH  Google Scholar 

  55. R. Gupta and M. R. Murty, “A remark on Artin’s conjecture”, Invent. Math., Vol. 78, 127–130 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  56. R. Gupta and M. R. Murty, “Primitive points on elliptic curves”, Compos. Math. Vol. 58, 13–44 (1986).

    MATH  MathSciNet  Google Scholar 

  57. R. Gupta and M. R. Murty, “Cyclicity and generation of points mod p on elliptic curves”, Invent. Math., Vol. 101, 225–235 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  58. G. Harman, Prime-detecting sieves, Princeton Univ. Press, Princeton, NY, to appear.

    Google Scholar 

  59. D. R. Heath-Brown, “Artin’s conjecture for primitive roots”, Quart. J. Math. Vol. 37, 27–38 (1986).

    MATH  MathSciNet  Google Scholar 

  60. F. Hess and I. E. Shparlinski, “On the linear complexity and multidimensional distribution of congruential generators over elliptic curves”, Designs, Codes and Cryptography, Vol. 35, 111–117 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  61. C. Hooley, “On Artin’s conjecture”, J. Reine Angew. Math., Vol. 225, 209–220 (1967).

    MATH  MathSciNet  Google Scholar 

  62. E.W. Howe, “On the group orders of elliptic curves over finite fields”, Compositio Math., Vol. 85, 229–247 (1993).

    MATH  MathSciNet  Google Scholar 

  63. H.-K. Indlekofer and N. M. Timofeev, “Divisors of shifted primes”, Publ. Math. Debrecen, Vol. 60, 307–345 (2002).

    MATH  MathSciNet  Google Scholar 

  64. K. James, “Average Frobenius distributions for elliptic curves with 3-torsion”, J. Number Theory, Vol. 109, 278–298 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  65. E. Jensen and M. R. Murty, “Artin’s conjecture for polynomials over finite fields”, Number Theory, Birkhäuser, Basel, 167–181 (2000).

    Google Scholar 

  66. A. Joux, “A one round protocol for tripartite Diffie-Hellman”, Lect. Notes in Comp. Sci., Vol. 1838, 385–393 (2000).

    MATH  MathSciNet  Google Scholar 

  67. A. Joux, “The Weil and Tate pairings as building blocks for public key cryptosystems”, Lect. Notes in Comp. Sci., Vol. 2369, 20–32 (2002).

    MATH  MathSciNet  Google Scholar 

  68. N. Koblitz, “Elliptic curve cryptosystems”, Math. Comp., Vol. 48, 203–209 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  69. N. Koblitz, “Primality of the number of points on an elliptic curve over a finite field”, Pacific J. Math., Vol. 131, 157–166 (1988).

    MATH  MathSciNet  Google Scholar 

  70. N. Koblitz, “Elliptic curve implementation of zero-knowledge blobs”, J. Cryptology, Vol. 4, 207–213 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  71. N. Koblitz, “CM curves with good cryptographic properties”, Lect. Notes in Comp. Sci., Vol. 576, 279–287 (1992).

    MATH  MathSciNet  Google Scholar 

  72. N. Koblitz, “Almost primality of group orders of elliptic curves defined over small finite fields”, Experiment. Math., Vol. 10, 553–558 (2001).

    MATH  MathSciNet  Google Scholar 

  73. N. Koblitz, “Good and bad uses of elliptic curves in cryptography”, Moscow Math. J., Vol. 2, 693–715 (2002).

    MATH  MathSciNet  Google Scholar 

  74. D. R. Kohel and I. E. Shparlinski, “Exponential sums and group generators for elliptic curves over finite fields”, Lect. Notes in Comp. Sci., Vol. 1838, 395–404 (2000).

    MATH  MathSciNet  Google Scholar 

  75. J. C. Lagarias, H. L. Montgomery and A. M. Odlyzko, “A bound for the least prime ideal in the Chebotarev density theorem”, Invent. Math., Vol. 54, 271–296 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  76. S. Lang and H. Trotter, Frobenius distributions in GL 2 extensions, Lecture Notes in Mathematics, Vol. 504, 1976.

    Google Scholar 

  77. S. Lang and H. Trotter, “Primitive points on elliptic curves”, Bull. Amer. Math. Soc., Vol. 83, 289–292 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  78. T. Lange, Efficient arithmetic on hyperelliptic curves, PhD thesis, Universität Gesamthochschule Essen, 2001.

    Google Scholar 

  79. T. Lange, “Koblitz curve cryptosystems”, Finite Fields and Their Appl., Vol. 11, 200–229 (2005).

    Article  MATH  Google Scholar 

  80. T. Lange and I. E. Shparlinski, “Certain exponential sums and random walks on elliptic curves”, Canad. J. Math., Vol. 57, 338–350 (2005).

    MATH  MathSciNet  Google Scholar 

  81. T. Lange and I. E. Shparlinski, “Collisions in fast generation of ideal classes and points on hyperelliptic and elliptic curves”, Appl. Algebra in Engin., Commun. and Computing, Vol. 15, 329–337 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  82. T. Lange and I. E. Shparlinski, “Distribution of some sequences of points on elliptic curves”, preprint, 2006.

    Google Scholar 

  83. H. W. Lenstra, “Factoring integers with elliptic curves”, Ann. Math., Vol. 126, 649–673 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  84. S. Li and C. Pomerance, “Primitive roots: A survey”, Number Theoretic Methods (Iizuka, 2001), Kluwer Acad. Publ., Dordrecht, 219–231 (2002).

    Google Scholar 

  85. S. Li and C. Pomerance, “On generalizing Artin’s conjecture on primitive roots to composite moduli”, J. Reine Angew. Math., Vol. 556, 205–224 (2003).

    MATH  MathSciNet  Google Scholar 

  86. R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  87. H.-Q. Liu and J.Wu, “Numbers with a large prime factor”, Acta Arith., Vol. 89, 163–187 (1999).

    MATH  MathSciNet  Google Scholar 

  88. Y.-R. Liu, “Prime divisors of the number of rational points on elliptic curves with complex multiplication”, Bull. London Math. Soc., Vol. 37, 658–664 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  89. Y.-R. Liu, “A prime analogue to Erdős-Pomerance’s conjecture for elliptic curves”, Comment. Math. Helv., Vol. 80, 755–769 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  90. Y.-R. Liu, “Prime analogues of the Erdős-Kac theorem for elliptic curves”, J. Number Theory, to appear.

    Google Scholar 

  91. F. Luca, J. McKee and I. E. Shparlinski, “Small exponent point groups on elliptic curves”, J. Théorie des Nombres Bordeaux, to appear.

    Google Scholar 

  92. F. Luca, D. J. Mireles and I. E. Shparlinski, “MOV attack in various subgroups on elliptic curves”, Illinois J. Math., Vol. 48, 1041–1052 (2004).

    MATH  MathSciNet  Google Scholar 

  93. F. Luca and I. E. Shparlinski, “On the exponent of the group of points on elliptic curves in extension fields”, Intern. Math. Research Notices, Vol. 2005, 1391–1409 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  94. F. Luca and I. E. Shparlinski, “Discriminants of complex multiplication fields of elliptic curves over finite fields”, preprint, 2005.

    Google Scholar 

  95. F. Luca and I. E. Shparlinski, “Elliptic curves with low embedding degree”, preprint, 2005.

    Google Scholar 

  96. J. McKee, “Subtleties in the distribution of the numbers of points on elliptic curves over a finite prime field”, J. London Math. Soc., Vol. 59, 448–460 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  97. A. Menezes, T. Okamoto and S. A. Vanstone, “Reducing elliptic curve logarithms to logarithms in a finite field”, IEEE Transactions on Information Theory, Vol. 39, 1639–1646 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  98. V. S. Miller, “Uses of elliptic curves in cryptography”, Lect. Notes in Comp. Sci., Vol. 218, 417–426 (1986).

    MATH  Google Scholar 

  99. V. S. Miller, “The Weil pairing and its efficient calculation”, J. Cryptology, Vol. 17, 235–261 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  100. S. A. Miri and V. K. Murty, “An application of sieve methods to elliptic curves”, Lect. Notes in Comp. Sci., Vol. 2247, 91–98 (2001).

    MATH  MathSciNet  Google Scholar 

  101. A. Miyaji, M. Nakabayashi and S. Takano, “New explicit conditions of elliptic curve traces for FR-reduction”, IEICE Trans. Fundamentals, Vol. E84-A, 1234–1243 (2001).

    Google Scholar 

  102. I. Miyamoto and M. R. Murty, “Elliptic pseudoprimes”, Math. Comp., Vol. 53, 415–430 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  103. M. R. Murty, “On Artin’s conjecture”, J. Number Theory, Vol. 16, 147–168 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  104. M. R. Murty, “An analogue of Artin’s conjecture for abelian extensions”, J. Number Theory, Vol. 18, 241–248 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  105. M. R. Murty, “Artin’s conjecture and elliptic analogues”, Sieve Methods, Exponential Sums, and their Applications in Number Theory, Cambridge Univ. Press., 325–344 (1996).

    Google Scholar 

  106. M. R. Murty and V. K. Murty, “Prime divisors of Fourier coefficients of modular forms”, Duke Math. J., Vol. 51, 57–76 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  107. M. R. Murty, V. K. Murty and N. Saradha, “Modular forms and the Chebotarev density theorem”, American J. Math., Vol. 110, 253–281 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  108. M. R. Murty, M. Rosen and J. H. Silverman, “Variations on a theme of Romanoff”, Intern. J. Math. Soc., Vol. 7, 373–391 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  109. M. R. Murty and S. Srinivasan, “Some remarks on Artin’s conjecture”, Canad. Math. Bull., Vol. 30, 80–85 (1987).

    MATH  MathSciNet  Google Scholar 

  110. W. Narkiewicz, Classical problems in number theory, Polish Sci. Publ., Warszawa, 1986.

    MATH  Google Scholar 

  111. F. Pappalardi, “On the order of finitely generated subgroups of Q* (mod p) and divisors of p - 1”, J. Number Theory, Vol. 57, 207–222 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  112. F. Pappalardi and I. E. Shparlinski, “On Artin’s conjecture over function fields”, Finite Fields and Their Appl., Vol. 1, 399–404 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  113. A. J. van der Poorten and H. P. Schlickewei, “Zeros of recurrence sequences”, Bull. Austral Math. Soc., Vol. 44, 215–223 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  114. K. Rubin and A. Silverberg, “Supersingular abelian varieties in cryptology”, Lect. Notes in Comp. Sci., Vol. 2442, 336–353 (2002).

    MATH  MathSciNet  Google Scholar 

  115. H.-G. Rück, “A note on elliptic curves over finite fields”, Math. Comp., Vol. 49, 301–304 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  116. R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems based on pairing”, Proc. of SCIS′2000, Okinawa, Japan, 2000.

    Google Scholar 

  117. O. Schirokauer, “Discrete logarithms and local units”, Philos. Trans. Roy. Soc. London, Ser. A, Vol. 345, 409–423 (1993).

    MATH  MathSciNet  Google Scholar 

  118. O. Schirokauer, D. Weber and T. Denny, “Discrete logarithms: The effectiveness of the index calculus method”, Lect. Notes in Comp. Sci., Vol. 1122, 337–362 (1996).

    MATH  MathSciNet  Google Scholar 

  119. R. Schoof, “Elliptic curves over finite fields and the computation of square roots mod p”, Math. of Comp., Vol. 44, 483–494 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  120. R. Schoof, “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory, Ser. A, Vol. 47, 183–211 (1987).

    Article  MathSciNet  Google Scholar 

  121. R. Schoof, “The exponents of the group of points on the reduction of an elliptic curve”, Arithmetic Algebraic Geometry, Progr. Math., Vol. 89, Birkhäuser, Boston, MA, 325–335 (1991).

    Google Scholar 

  122. M. Scott and P. S. L. M. Barreto, “Generating more MNT elliptic curves”, Designs, Codes and Cryptography, to appear.

    Google Scholar 

  123. J.-P. Serre, “Résumé des cours de 1977–1978”, Collected Papers, Vol. III, Springer Verlag, Berlin, 465–468 (1986).

    Google Scholar 

  124. I. E. Shparlinski, “On the Naor-Reingold pseudo-random function from elliptic curves”, Appl. Algebra in Engin., Commun. and Computing, Vol. 11, 27–34 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  125. I. E. Shparlinski, “Orders of points on elliptic curves”, Affine Algebraic Geometry, Amer. Math. Soc., 245–252 (2005).

    Google Scholar 

  126. I. E. Shparlinski and J. H. Silverman, “On the linear complexity of the Naor-Reingold pseudo-random function from elliptic curves”, Designs, Codes and Cryptography, Vol. 24, 279–289 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  127. J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  128. J. H. Silverman and J. Tate, Rational points on elliptic curves, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  129. J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptography, Vol. 19, 195–249 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  130. J. Steuding and A.Weng, “On the number of prime divisors of the order of elliptic curves modulo p”, Acta Arith., Vol. 117, 341–352 (2005).

    MATH  MathSciNet  Google Scholar 

  131. M. Tsfasman and S. Vlăduţ, Algebraic-Geometric Codes, Kluwer Acad. Pres, Dordrecht, 1991.

    MATH  Google Scholar 

  132. E. R. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve cryptosystems”, Lect. Notes in Comp. Sci., Vol. 2045, 195–210 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  133. S. G. Vlăduţ, “Cyclicity statistics for elliptic curves over finite fields”, Finite Fields and Their Appl., Vol. 5, 13–25 (1999).

    Article  MATH  Google Scholar 

  134. S. G. Vlăduţ, “On the cyclicity of elliptic curves over finite field extensions”, Finite Fields and Their Appl., Vol. 5, 354–363 (1999).

    Article  MATH  Google Scholar 

  135. J.F. Voloch, “A note on elliptic curves over finite fields”, Bull. Soc. Math. Franc., Vol. 116, 455–458 (1988).

    MATH  MathSciNet  Google Scholar 

  136. W. C.Waterhouse, “Abelian varieties over finite fields”, Ann. Sci. Ecole Norm. Sup., Vol. 2, 521–560 (1969).

    MATH  MathSciNet  Google Scholar 

  137. A. Weng, “On group orders of rational points of elliptic curves”, Quaest. Math., Vol. 25, 513–525 (2002).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Murty, R., Shparlinski, I. (2006). GROUP STRUCTURE OF ELLIPTIC CURVES OVER FINITE FIELDS AND APPLICATIONS. In: Garcia, A., Stichtenoth, H. (eds) Topics in Geometry, Coding Theory and Cryptography. Algebra and Applications, vol 6. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5334-4_5

Download citation

Publish with us

Policies and ethics