Skip to main content

Antarctic Climate Change and its Influences on Terrestrial Ecosystems

  • Chapter
Trends in Antarctic Terrestrial and Limnetic Ecosystems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, H. and Adamson, E. (1992) Possible effects of climate change on Antarctic terrestrial vegetation, in P. Quilty (ed.), Impact of Climate Change on Antarctica-Australia, Australian Government Publishing Service, Canberra, Australia, pp. 52-61.

    Google Scholar 

  • Adamson, D.A., Whetton, P. and Selkirk, P.M. (1988) An analysis of air temperature records for Macquarie Island: decadal warming, ENSO cooling and southern hemisphere circulation patterns, Papers and Proceedings of the Royal Society of Tasmania 122,107-112.

    Google Scholar 

  • Allison, I.F. and Keage, P.L. (1986) Recent changes in the glaciers of Heard Island, Polar Record 23, 255-271.

    Google Scholar 

  • Arnold, R.J. and Convey, P. (1998) The life history of the diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: Dytiscidae), on subantarctic South Georgia, Polar Biology 20, 153-160.

    Article  Google Scholar 

  • Arnold, R.J., Convey, P., Hughes, K.A. and Wynn-Williams, D.D. (2003) Seasonal periodicity of physical factors, inorganic nutrients and microalgae in Antarctic fellfields, Polar Biology 26, 396-403.

    Google Scholar 

  • Bentley, M.J. and Anderson, J.B. (1998) Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea – Antarctic Peninsula region during the Last Glacial Maximum, Antarctic Science 10, 309-325.

    Google Scholar 

  • Bergstrom, D.M. and Chown, S.L. (1999) Life at the front: history, ecology and change on southern ocean islands, Trends in Ecology and Evolution 14, 472-477.

    Article  PubMed  Google Scholar 

  • Block W. (1996) Cold or drought - the lesser of two evils for terrestrial arthropods? European Journal of Entomology 93, 325-339.

    Google Scholar 

  • Block, W. and Convey, P. (2001) Seasonal and long-term variation in body water content of an Antarctic springtail - a response to climate change? Polar Biology 24, 764-770.

    Article  Google Scholar 

  • Budd, W.F. and Simmonds, L. (1991) The impact of global warming on the Antarctic mass balance and global sea level, in G. Weller, C.L. Wilson and B.A.B. Severin (eds.), Proceedings of the International Conference on the Role of Polar Regions in Global Change, Geophysics Institute, University of Alaska, Fairbanks, pp. 489-494.

    Google Scholar 

  • Camill, P. and Clark, J.S. (2000) Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and grassland/woodland boundary, Ecosystems 3, 534-544.

    Article  Google Scholar 

  • Cannone, N. and Guglielmin, M. (2003) Vegetation and permafrost: sensitive systems for the development of a monitoring program of climate change along an Antarctic transect, in A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vies and W.J. Wolff (eds.) Antarctic Biology in a Global Context, Backhuys, Leiden, pp. 31-36.

    Google Scholar 

  • Chapuis, J.L., Frenot, Y. and Lebouvier, M. (2004) Recovery of native plant communities after eradication of rabbits from the subantarctic Kerguelen Islands, and influence of climate change, Biological Conservation 117, 167–179.

    Article  Google Scholar 

  • Chown, S.L. and Smith, V.R. (1993) Climate change and the short-term impact of feral house mice at the sub-antarctic Prince Edward Islands, Oecologica 96, 508-518.

    Article  Google Scholar 

  • Clapperton, C.M. and Sugden, D.E. (1982) Late quaternary glacial history of George VI Sound area, West Antarctica, Quaternary Research 18, 243-267.

    Article  Google Scholar 

  • Clapperton, C.M. and Sugden, D.E. (1988) Holocene glacier fluctuations in South America and Antarctica, Quaternary Science Reviews 7, 185-198.

    Article  Google Scholar 

  • Cockell, C.S., Rettberg, P., Horneck, G., Wynn-Williams, D.D., Scherer, K. and Gugg-Helminger, A. (2002) Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies, Journal of Photochemistry and Photobiology B: Biology 68, 23-32.

    Article  CAS  Google Scholar 

  • COHIMAR/SEDANO Scientific Party. (2003) Uncovering the footprint of former ice streams off Antarctica, Eos, Transactions, American Geophysical Union 84(11), 97 and 102-103.

    Google Scholar 

  • Convey P. (1996a) Overwintering strategies of terrestrial invertebrates in Antarctica - the significance of flexibility in extremely seasonal environments, European Journal of Entomology 93, 489-505.

    Google Scholar 

  • Convey, P. (1996b) The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota, Biological Reviews 71, 191-225.

    Google Scholar 

  • Convey, P. (1996c) Reproduction of Antarctic flowering plants, Antarctic Science 8, 127-134.

    Google Scholar 

  • Convey, P. (1997a) How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? Journal of Thermal Biology 22, 429-440.

    Article  Google Scholar 

  • Convey, P. (1997b) Environmental change: possible consequences for the life histories of Antarctic terrestrial biota, Korean Journal of Polar Research 8, 127-144.

    Google Scholar 

  • Convey, P. (2001) Terrestrial ecosystem response to climate changes in the Antarctic, in G.-R. Walther, C.A. Burga and P.J. Edwards (eds.), ‘‘Fingerprints’’ of climate change - adapted behaviour and shifting species ranges, Kluwer, New York, pp 17-42.

    Google Scholar 

  • Convey, P. (2003) Maritime Antarctic climate change: signals from terrestrial biology, in E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 145-158.

    Google Scholar 

  • Convey, P. and McInnes, S.J. (2005) Exceptional, tardigrade dominated, ecosystems from Ellsworth Land, Antarctica, Ecology 86, 519-527.

    Google Scholar 

  • Convey, P. and Wynn-Williams, D.D. (2002) Antarctic soil nematode response to artificial environmental manipulation, European Journal of Soil Biology 38, 255-259.

    Article  Google Scholar 

  • Convey, P., Block, W. and Peat, H.J. (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? Global Change Biology 9, 1718-1730.

    Article  Google Scholar 

  • Convey, P., Chown, S.L., Wasley, J. and Bergstrom, D.M. (2006b) Life history traits, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).

    Google Scholar 

  • Convey, P., Frenot, Y., Gremmen, N. and Bergstrom, D.M. (2006a) Biological invasions, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).

    Google Scholar 

  • Convey, P., Pugh, P. J. A., Jackson, C., Murray, A. W., Ruhland, C. T., Xiong, F. S. and Day, T. A. (2002) Response of Antarctic terrestrial arthropods to multifactorial climate manipulation over a four year period, Ecology 83, 3130-3140.

    Article  Google Scholar 

  • Coulson, S.J., Leinaas, H.P., Ims, R.A. and Søvik, G. (2000) Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community, Ecography 23, 299-306.

    Article  Google Scholar 

  • Cullather, R.I., Bromwich, D.H. and van Woert, M.L. (1996) Inter-annual variations in Antarctic precipitation related to El Niño - Southern Oscillation, Journal of Geophysical Research 101, 19109-19118.

    Article  Google Scholar 

  • Danks, H.V. (1999) Life cycles in polar arthropods - flexible or programmed? European Journal of Entomology 96, 83-102.

    Google Scholar 

  • Davey, M.C., Pickup, J. and Block, W. (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island, Antarctic Science 4, 383-388.

    Google Scholar 

  • Day, T.A. (2001) Multiple trophic levels in UV-B assessments - completing the ecosystem, New Phytologist 152, 183-186.

    Article  Google Scholar 

  • Day, T.A., Ruhland, C.T. and Xiong, F. (2001) Influence of solar UV-B radiation on Antarctic terrestrial plants: results from a 4-year field study, Journal of Photochemistry and Photobiology B: Biology 62, 78-87.

    Article  CAS  Google Scholar 

  • Day, T.A., Ruhland, C.T., Grobe, C.W. and Xiong, F. (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field, Oecologia 119, 24-35.

    Article  Google Scholar 

  • Doran, P.T., Priscu J.C., Lyons, W.B., Walsh, J.E., Fountain, A.G., McKnight, D.M., Moorhead, D.L., Virginia, R.A., Wall, D.H., Clow, G.D., Fritsen, C. H., McKay, C. P., Parsons, A.N. (2002) Antarctic climate cooling and terrestrial ecosystem response, Nature 415, 517-520.

    Article  PubMed  CAS  Google Scholar 

  • Farman, J.C., Gardiner, B.G. and Shanklin, J.D. (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/Nox interaction, Nature 315, 207-210.

    Article  CAS  Google Scholar 

  • Fowbert, J.A. and Smith, R.I.L. (1994) Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula, Arctic and Alpine Research 26, 290-296.

    Article  Google Scholar 

  • Fox, A.J. and Cooper, A.P.R. (1998) Climate-change indicators from archival aerial photography of the Antarctic Peninsula, Annals of Glaciology 27, 636-642.

    Google Scholar 

  • Freckman, D.W. and Virginia, R.A., (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance, Ecology 78, 363-369.

    Article  Google Scholar 

  • Frenot, Y., Gloaguen, J.-C., and Tréhen, P. (1997) Climate change in Kerguelen Islands and colonization of recently deglaciated areas by Poa kerguelensis and P. annua in B. Battaglia, J. Valencia and D.W.H. Walton (eds.), Antarctic Communities: Species, Structure and Survival, Cambridge University Press, Cambridge, UK, pp. 358-366.

    Google Scholar 

  • Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P., Convey, P., Skotnicki, M. and Bergstrom, D. (2005) Biological invasions in the Antarctic: extent, impacts and implications, Biological Reviews 80, 45-72.

    Article  PubMed  Google Scholar 

  • Gautier, C., He, G. and Yang, S. (1994) Role of clouds and ozone on spectral ultraviolet-B radiation and biologically active UV dose over Antarctica, In C. Weiler and P. Penhale (eds.), Ultraviolet radiation in Antarctica: measurement and biological effects.Antarctic Research Series, Vol. 62, American Geophysical Union, Washington, DC, pp. 83-91.

    Google Scholar 

  • Gerighausen, U., Bräutigam, K., Mustafa, O. and Peter, H.-U. (2003) Expansion of vascular plants on an Antarctic island – a consequence of climate change? In A.H.L. Huiskes, W.W.C. Gieskes, J. Rozema, R.M.L. Schorno, S.M. van der Vies and W.J. Wolff (eds.) Antarctic Biology in a Global Context, Backhuys, Leiden, pp. 79-83.

    Google Scholar 

  • Gordon, J.E. and Timmis, R.J. (1992) Glacier fluctuations on South Georgia during the 1970s and early 1980s, Antarctic Science 4, 215-226.

    Google Scholar 

  • Grobe, C.W., Ruhland C.T. and Day T.A. (1997) A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures, Arctic and Alpine Research 29, 217-221.

    Article  Google Scholar 

  • Hall, B.L. (2003) An overview of late Pleistocene glaciation in the South Shetland Islands, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 103-113.

    Google Scholar 

  • Harangozo, S.A. (2000) A search for ENSO teleconnections in the west Antarctic Peninsula climate in austral winter, International Journal of Climatology 20, 663-679.

    Article  Google Scholar 

  • Harangozo, S.A., Colwell, S.R. and King, J.C. (1997) An analysis of a 34-year air temperature record from Fossil Bluff (71oS 68oW), Antarctica, Antarctic Science 9, 355-363.

    Google Scholar 

  • Hennion, F., Huiskes, A.H.L., Robinson, S. and Convey, P. (2006) Physiological traits or organisms in a changing environment, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).

    Google Scholar 

  • Hjort, C., Ingòlfsson, Ã’., Bentley, M.J. and Björck, S. (2003) The late Pleistocene and Holocene glacial and climate history of the Antarctic Peninsula region as documented by the land and lake sediment records – a review, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.) Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 95-102.

    Google Scholar 

  • Hughes, K.A., Ott, S., Bölter, M. and Convey, P. (2006) Colonisation processes, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).

    Google Scholar 

  • Inter-governmental Panel on Climate Change (IPCC) (2001) Climate change 2001: impacts, adaptation and vulnerability, In J.J. McCarthy, O.F. Canziani, N.A. Leary, D.J. Dokken and K.S. White (eds), Contribution of Working Group 2 to the Third Assessment Report of the IPCC, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Jacka, T.H. and Budd, W.F. (1998) Detection of temperature and sea-ice-extent changes in the Antarctic and Southern Ocean, 1949-96, Annals of Glaciology 27, 553-559.

    Google Scholar 

  • Kennedy, A.D. (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis,Arctic and Alpine Research 25, 308-315.

    Article  Google Scholar 

  • Kennedy, A.D. (1994) Simulated climate change: a field manipulation study of polar microarthropod community response to global warming, Ecography 17, 131-140.

    Article  Google Scholar 

  • Kennedy, A.D. (1995a) Antarctic terrestrial ecosystem response to global environmental change, Annual Review of Ecology and Systematics 26, 683-704.

    Article  Google Scholar 

  • Kennedy, A.D. (1995b) Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments, Functional Ecology 9, 340-350.

    Article  Google Scholar 

  • Kennedy, A.D. (1995c) Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biology 1, 29-42.

    Article  Google Scholar 

  • Kennedy, A.D. (1996) Antarctic fellfield response to climate change: a tripartite synthesis of experimental data, Oecologia 107, 141-150.

    Article  Google Scholar 

  • Kettles, I.M., Tarnocai, C. and Bauke, S.D. (1997) Predicted permafrost distribution in Canada under a climate warming scenario, Geological Survey of Canada, Current Research 1997-E, 109-115.

    Google Scholar 

  • Kiernan, K. and McConnell, A. (2002) Glacier retreat and melt-lake expansion at Stephenson Glacier, Heard Island World Heritage Area, Polar Record 38 (207), 297-308.

    Article  Google Scholar 

  • King, J.C. (1994) Recent climate variability in the vicinity of the Antarctic Peninsula, International Journal of Climatology 14, 357-369.

    Article  Google Scholar 

  • King, J.C. and Harangozo, S.A. (1998) Climate change in the western Antarctic Peninsula since 1945: observations and possible causes, Annals of Glaciology 27, 571-575.

    Google Scholar 

  • King, J.C., Turner, J., Marshall, G.J., Connally, W.M. and Lachlan-Cope, T.A. (2003) Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 17-30.

    Google Scholar 

  • Larter, R.D. and Vanneste, L.E. (1995) Relict subglacial deltas on the Antarctic Peninsula outer shelf, Geology 23, 33-36.

    Article  Google Scholar 

  • Lawley, B., Ripley, S., Bridge, P. and Convey, P. (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils, Applied and Environmental Microbiology 70, 5963-5972.

    Article  PubMed  CAS  Google Scholar 

  • Lorius, C., Jouzel, J., Ritz, C., Merlivat, L. and Barkov, N.I. (1985) A 150,000-year climate record from Antarctic ice, Nature 316, 591-596.

    Article  CAS  Google Scholar 

  • Lubin, D. and Frederick, J. (1991) The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover, Journal of Applied Meteorology 30, 478-493.

    Article  Google Scholar 

  • Lyons, W.B., Laybourn-Parry, J., Welch, K.A. and Priscu, J.C. (2006) Antarctic lake systems and climate change, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).

    Google Scholar 

  • McGraw, J.B. and Day, T.A. (1997) Size and characteristics of a natural seed bank in Antarctica, Arctic and Alpine Research 29, 213-216.

    Article  Google Scholar 

  • Morris, E.M. and Vaughan, D.G. (2003) Spatial and temporal variation of surface temperature on the Antarctic Peninsula and the limit of variability of ice shelves, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 61-68.

    Google Scholar 

  • Nicolai, V., and Droste, M. (1984) The ecology of Lancetes claussi (Müller) (Coleoptera, Dytiscidae), the Subantarctic water beetle of South Georgia, Polar Biology 3, 39-44.

    Article  Google Scholar 

  • Noon, P.E, Birks, H.J.B., Jones, V.J. and Ellis-Evans, J.C. (2001) Quantitative models for reconstructing catchment ice-extent using physical-chemical characteristics of lake sediments, Journal of Palaeolimnology 25, 375-392.

    Article  Google Scholar 

  • Ã’ Cofaigh, C., Pudsey, C.J., Dowdeswell, J.A. and Morris, P. (2002) Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf, Geophysical Research Letters 29, 1199, doi: 10.1029/2001GLO14488.

    Article  Google Scholar 

  • Pudsey, C.J. and Evans, J. (2001) First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat, Geology 29, 787-790.

    Article  Google Scholar 

  • Pugh, P.J.A. and Davenport, J. (1997) Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities, Journal of Experimental Marine Biology and Ecology 210, 1-21.

    Article  Google Scholar 

  • Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C. and Harrigan, P.R. (2002) Extreme responses to climate change in Antarctic lakes, Science 295, 645.

    Article  PubMed  CAS  Google Scholar 

  • Quayle, W.C, Convey, P., Peck, L.S., Ellis-Evans, J.C., Butler, H.G., and Peat, H.J. (2003) Ecological responses of maritime Antarctic lakes to regional climate change, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C. pp. 159-170.

    Google Scholar 

  • Roberts, L. (1989) Does the ozone hole threaten antarctic life? Science 244, 288-289.

    Article  Google Scholar 

  • Rozema, J., Noordijk, A.S.J., Broekman, R.A., van Beem, A., Meijkamp, B.M., de Bakker, N.V., van de Staaij, J.W.M., Stroetenga, M., Bohncke, S.J.P., Konert, M., Kars, S., Peat, H.J., Smith, R.I.L. and Convey, P. (2001) (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B: a new proxy for the reconstruction of past solar UV-B? Plant Ecology 154, 9-25.

    Article  Google Scholar 

  • Sabburg, J. and Wong, J. (2000) The effect of clouds on enhancing UVB irradiance at the earth’s surface: a one year study, Geophysical Research Letters 27, 3337-3340.

    Article  CAS  Google Scholar 

  • Santas, R., Koussoulaki, A. and Häder, D.-P. (1997) In assessing biological UV-B effects, natural fluctuations of solar radiation should be taken into account, Plant Ecology 128, 93-97.

    Article  Google Scholar 

  • Scambos, T., Hulbe, C. and Fahnestock, M. (2003) Climate-induced ice shelf disintegration in the Antarctic Peninsula, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 79-92.

    Google Scholar 

  • Searles, P.S., Kropp, B.R., Flint, S.D. and Caldwell, M.M. (2001) Influence of solar UV-B radiation on peatland microbial communities of southern Argentina, New Phytologist 152, 213-221.

    Article  Google Scholar 

  • Skvarca, P. and De Angelis, H. (2003) Impact assessment of regional climatic warming on glaciers and ice shelves of the northwestern Antarctic Peninsula, In E. Domack, A. Burnett, A. Leventer, P. Convey, M. Kirby and R. Bindschadler (eds.), Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives, Antarctic Research Series, Vol. 79, American Geophysical Union, Washington, D.C., pp. 69-78.

    Google Scholar 

  • Skvarca, P., Rack, W., Rott, H. and Ibarzàbal y Donàngelo, T. (1998) Evidence of recent climatic warming on the eastern Antarctic Peninsula, Annals of Glaciology 27, 628-632.

    Google Scholar 

  • Smith R.I.L. (1987) The bryophyte propagule bank of Antarctic fellfield soils, Symp. Biol. Hungarica 35, 233-245.

    Google Scholar 

  • Smith, R.I.L. (1988) Recording bryophyte microclimate in remote and severe environments, In J.M. Glime (ed.), Methods in Bryology, Hattori Botanical Laboratory, Nichinan, Japan, pp. 275-284.

    Google Scholar 

  • Smith, R.I.L. (1990) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems, In K.R. Kerry and G. Hempel (eds.), Antarctic Ecosystems, Ecological Change and Conservation, Springer-Verlag, Berlin, pp. 32-50.

    Google Scholar 

  • Smith, R.I.L. (1993) The role of bryophyte propagule banks in primary succession: case-study of an Antarctic fellfield soil, in: J. Miles and D.W.H. Walton, (eds), Primary Succession on Land, British Ecological Society Special Publication, Blackwell Scientific Publications, Oxford, UK, pp 55-78.

    Google Scholar 

  • Smith, R.I.L. (1994) Vascular plants as indicators of regional warming in Antarctica, Oecologia 99, 322-328.

    Article  Google Scholar 

  • Smith, R.I.L. (2001) Plant colonization response to climate change in the Antarctic, Folia Facultatis Scientiarum Naturalium Universitatis Masarykiana Brunensis, Geographia, 25, 19-33.

    Google Scholar 

  • Smith, R.I.L. and Coupar, A.M. (1986) The colonization potential of bryophyte propagules in Antarctic fellfield soils, CNFRA 58, 189-204.

    Google Scholar 

  • Smith, V.R. (2002) Climate change in the subantarctic: An illustration from Marion Island, Climate Change 52, 345-357.

    Article  CAS  Google Scholar 

  • Smith, V.R. and Steenkamp, M. (1990) Climatic change and its ecological implications at a subantarctic island, Oecologia 85, 14-24.

    Article  Google Scholar 

  • Sømme, L. (1995) Invertebrates in Hot and Cold Arid Environments, Springer-Verlag, Berlin.

    Google Scholar 

  • Stevens, M.I. and Hogg, I.D. (2006) The molecular ecology of Antarctic terrestrial and limnetic invertebrates and microbes, in D.M. Bergstrom, P. Convey, and A.H.L. Huiskes (eds.), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, Springer, Dordrecht (this volume).

    Google Scholar 

  • Strathdee, A.T., Bale, J.S., Block, W.C., Coulson, S.J., Hodkinson, I.D. and Webb, N.R. (1993) Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen, Oecologia 96, 457-465.

    Article  Google Scholar 

  • Thompson, D.W.J. and Solomon, S. (2002) Interpretation of recent Southern Hemisphere climate change, Science 296, 895-899.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J., Colwell, S.R. and Harangozo, S. (1997) Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations, Journal of Geophysical Research 102, 13999-14007.

    Article  Google Scholar 

  • Turner, J., King, J.C., Lachlan-Cope, T.A. and Jones, P.D. (2002) Recent temperature trends in the Antarctic, Nature 418, 291-292.

    Article  PubMed  CAS  Google Scholar 

  • Tweedie, C.E. and Bergstrom, D.M. (2000) A climate change scenario for surface air temperature at subantarctic Macquarie Island, in W. Davison, C. Howard-Williams and P.A. Broady (eds.),Antarctic Ecosystems: Models for Wider Ecological Understanding, New Zealand Natural Sciences, Christchurch, pp. 272-281.

    Google Scholar 

  • Vaughan, D.G and Doake, C.S.M. (1996) Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula, Nature 379, 328-331.

    Article  CAS  Google Scholar 

  • Vaughan, D.G., Marshall, G. J., Connolley, W. C., King, J. C. and Mulvaney, R. (2001) Devil in the detail, Science 293, 1777-1779.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, D. G., Marshall, G.J., Connolley, W.M., Parkinson, C.L., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. and Turner, J. (2003) Recent rapid regional climate warming on the Antarctic Peninsula, Climate Change 60, 243-274.

    Article  Google Scholar 

  • Voytek, M.A. (1990) Addressing the biological effects of decreased ozone on the Antarctic environment, Ambio 19, 52-61.

    Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Parmesan, C., Menzel, M., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002) Ecological responses to recent climate change, Nature 416, 389-395.

    Article  PubMed  CAS  Google Scholar 

  • Walton, D.W.H. (1982) The Signy Island terrestrial reference sites: XV. Microclimate monitoring, 1972-74, British Antarctic Survey Bulletin 55, 111-126.

    Google Scholar 

  • Walton, D.W.H. (1984) The terrestrial environment, in R.M. Laws (ed), Antarctic EcologyVolume 1. Academic Press, London, pp 1-60.

    Google Scholar 

  • Walton, D.W.H., Vincent, W.F., Timperley, M.H., Hawes, I. and Howard-Williams, C. (1997) Synthesis: polar deserts as indicators of change, in: W.B. Lyons, C. Howard-Williams and I. Hawes (eds.) Ecosystem Processes in Antarctic Ice-Free Landscapes. Balkema, Rotterdam, pp. 275-279.

    Google Scholar 

  • Whinam, J. and Copson, G. (2006) Sphagnum moss: an indicator of climate change in the sub-Antarctic, Polar Record 42,43-49.

    Article  Google Scholar 

  • Wynn-Williams, D.D. (1994) Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonizers: cyanobacteria, algae, and cryptogams, Antarctic Research Series 62, 243-257.

    Google Scholar 

  • Wynn-Williams, D.D. (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica, Microbial Ecology 31, 177-188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Convey, P. (2006). Antarctic Climate Change and its Influences on Terrestrial Ecosystems. In: Bergstrom, D.M., Convey, P., Huiskes, A.H.L. (eds) Trends in Antarctic Terrestrial and Limnetic Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5277-4_12

Download citation

Publish with us

Policies and ethics