Skip to main content

Prokaryotic Systems Biology

  • Chapter
Systems Biology

Part of the book series: Cell Engineering ((CEEN,volume 5))

Abstract

Prokaryotic systems biology is a holistic biological approach that enables comprehensive understanding of an organism. However, two opposing strategies have been proposed to attain such understanding: the top-down and bottom-up approaches. Here we present a review of the current status of the prokaryotic systems biology field against the backdrop of the top-down vs. bottom-up debate, including such topics as current experimental and computational methods and recent literature findings. We use four prokaryotic model systems as examples, including E. coli, Caulobacter crescentus, Halobacterium NRC-1, and Helicobacter pylori. We posit that systems biology programs which pursue an integrated combination of both approaches will be the most successful in attaining comprehensive systems-level understanding of prokaryotic model organisms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zeth, K., Offermann, S., Essen, L. O. & Oesterhelt, D. (2004) Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. Proc Natl Acad Sci U S A 101, 13780–5.

    Article  PubMed  CAS  Google Scholar 

  2. Kramer, B. P., Fischer, M. & Fussenegger, M. (2005) Semi-synthetic mammalian gene regulatory networks. Metab Eng 7, 241–50.

    Article  PubMed  CAS  Google Scholar 

  3. Kitano, H. (2002) Computational systems biology. Nature 420, 206–10.

    Article  PubMed  CAS  Google Scholar 

  4. Stelling, J. (2004) Mathematical models in microbial systems biology. Curr Opin Microbiol 7, 513–8.

    Article  PubMed  Google Scholar 

  5. Bray, D. (2003) Molecular networks: the top-down view. Science 301, 1864–5.

    Article  PubMed  CAS  Google Scholar 

  6. Ideker, T. & Lauffenburger, D. (2003) Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol 21, 255–62.

    Article  PubMed  CAS  Google Scholar 

  7. McAdams, H. H., Srinivasan, B. & Arkin, A. P. (2004) The evolution of genetic regulatory systems in bacteria. Nat Rev Genet 5, 169–78.

    Article  PubMed  CAS  Google Scholar 

  8. Wolf, D. M. & Arkin, A. P. (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6, 125–34.

    Article  PubMed  CAS  Google Scholar 

  9. Blattner, F. R. et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453–74.

    Article  PubMed  CAS  Google Scholar 

  10. Nierman, W. C. et al. (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A 98, 4136–41.

    Article  PubMed  CAS  Google Scholar 

  11. Corbin, R. W. et al. (2003) Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci U S A 100, 9232–7.

    Article  PubMed  CAS  Google Scholar 

  12. Grunenfelder, B. et al. (2001) Proteomic analysis of the bacterial cell cycle. Proc Natl Acad Sci U S A 98, 4681–6.

    Article  PubMed  CAS  Google Scholar 

  13. Vohradsky, J. et al. (2003) Proteome of Caulobacter crescentus cell cycle publicly accessible on SWICZ server. Proteomics 3, 1874–82.

    Article  PubMed  CAS  Google Scholar 

  14. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–8.

    Article  PubMed  CAS  Google Scholar 

  15. Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99, 4632–7.

    Article  PubMed  CAS  Google Scholar 

  16. Ren, B. et al. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–9.

    Article  PubMed  CAS  Google Scholar 

  17. Holtzendorff, J. et al. (2004) Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304, 983–7.

    Article  PubMed  CAS  Google Scholar 

  18. McAdams, H. H. & Shapiro, L. (2003) A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–7.

    Article  PubMed  CAS  Google Scholar 

  19. Crosson, S., McGrath, P. T., Stephens, C., McAdams, H. H. & Shapiro, L. (2005) Conserved modular design of an oxygen sensory/signaling network with species-specific output. Proc Natl Acad Sci U S A 102, 8018–23.

    Article  PubMed  CAS  Google Scholar 

  20. Biondi, E. G. et al. (2006) A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Mol Microbiol 59, 386–401.

    Article  PubMed  CAS  Google Scholar 

  21. Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G. & Laub, M. T. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3, e334.

    Article  PubMed  Google Scholar 

  22. Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20, 433–40.

    Article  PubMed  CAS  Google Scholar 

  23. Gutierrez-Rios, R. M. et al. (2003) Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res 13, 2435–43.

    Article  PubMed  CAS  Google Scholar 

  24. Salgado, H. et al. (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34, D394–7.

    Article  PubMed  CAS  Google Scholar 

  25. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31, 64–8.

    Article  PubMed  CAS  Google Scholar 

  26. Resendis-Antonio, O. et al. (2005) Modular analysis of the transcriptional regulatory network of E. coli. Trends Genet 21, 16–20.

    Article  PubMed  CAS  Google Scholar 

  27. Edwards, J. S. & Palsson, B. O. (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97, 5528–33.

    Article  PubMed  CAS  Google Scholar 

  28. Almaas, E., Oltvai, Z. N. & Barabasi, A. L. (2005) The Activity Reaction Core and Plasticity of Metabolic Networks. PLoS Comput Biol 1, e68.

    Article  PubMed  Google Scholar 

  29. Edwards, J. S., Ibarra, R. U. & Palsson, B. O. (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19, 125–30.

    Article  PubMed  CAS  Google Scholar 

  30. Covert, M. W., Schilling, C. H. & Palsson, B. (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213, 73–88.

    Article  PubMed  CAS  Google Scholar 

  31. Van Dien, S. J. & Lidstrom, M. E. (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol Bioeng 78, 296–312.

    Article  PubMed  Google Scholar 

  32. Edwards, J. S. & Palsson, B. O. (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274, 17410–6.

    Article  PubMed  CAS  Google Scholar 

  33. Mahadevan, R. et al. (2006) Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling. Appl Environ Microbiol 72, 1558–68.

    Article  PubMed  CAS  Google Scholar 

  34. Schilling, C. H. et al. (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184, 4582–93.

    Article  PubMed  CAS  Google Scholar 

  35. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–6.

    Article  PubMed  CAS  Google Scholar 

  36. Barrett, C. L., Herring, C. D., Reed, J. L. & Palsson, B. O. (2005) The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc Natl Acad Sci U S A 102, 19103–8.

    Article  PubMed  CAS  Google Scholar 

  37. Bochner, B. R., Gadzinski, P. & Panomitros, E. (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11, 1246–55.

    Article  PubMed  CAS  Google Scholar 

  38. Bailey, J. E. (2001) Complex biology with no parameters. Nat Biotechnol 19, 503–4.

    Article  PubMed  CAS  Google Scholar 

  39. McAdams, H. H. & Shapiro, L. (1995) Circuit simulation of genetic networks. Science 269, 650–6.

    Article  PubMed  CAS  Google Scholar 

  40. Barkai, N. & Leibler, S. (1997) Robustness in simple biochemical networks. Nature 387, 913–7.

    Article  PubMed  CAS  Google Scholar 

  41. Kollmann, M., Lovdok, L., Bartholome, K., Timmer, J. & Sourjik, V. (2005) Design principles of a bacterial signalling network. Nature 438, 504–7.

    Article  PubMed  CAS  Google Scholar 

  42. Wadhams, G. H. & Armitage, J. P. (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5, 1024–37.

    Article  PubMed  CAS  Google Scholar 

  43. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. (1999) Robustness in bacterial chemotaxis. Nature 397, 168–71.

    Article  PubMed  CAS  Google Scholar 

  44. Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–4.

    Article  PubMed  CAS  Google Scholar 

  45. Yi, T. M., Huang, Y., Simon, M. I. & Doyle, J. (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97, 4649–53.

    Article  PubMed  CAS  Google Scholar 

  46. Facciotti, M. T., Bonneau, R., Hood, L. & Baliga, N. S. (2004) Systems biology experimental design–considerations for building predictive gene regulatory network models for prokaryotic systems. Current Genomics 5 527–544.

    Article  CAS  Google Scholar 

  47. Tomb, J. F. et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–47.

    Article  PubMed  CAS  Google Scholar 

  48. Ng, W. V. et al. (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97, 12176–81.

    Article  PubMed  CAS  Google Scholar 

  49. Bonneau, R., Baliga, N. S., Deutsch, E. W., Shannon, P. & Hood, L. (2004) Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1. Genome Biol 5, R52.

    Article  PubMed  Google Scholar 

  50. Goo, Y. A. et al. (2003) Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol Cell Proteomics 2, 506–24.

    PubMed  CAS  Google Scholar 

  51. Baliga, N. S. et al. (2002) Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc Natl Acad Sci U S A 99, 14913–8.

    Article  CAS  Google Scholar 

  52. Gan, R. R. et al. (2006) Proteome analysis of Halobacterium sp. NRC-1 facilitated by the biomodules analysis tool BMSorter. Mol Cell Proteomics.

    Google Scholar 

  53. Pleissner, K. P. et al. (2004) Web-accessible proteome databases for microbial research. Proteomics 4, 1305–13.

    Article  PubMed  CAS  Google Scholar 

  54. Bumann, D., Meyer, T. F. & Jungblut, P. R. (2001) Proteome analysis of the common human pathogen Helicobacter pylori. Proteomics 1, 473–9.

    Article  PubMed  CAS  Google Scholar 

  55. Robb, F. T. et al. Archaea: A laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1995).

    Google Scholar 

  56. Baliga, N. S. et al. (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14, 1025–35.

    Article  PubMed  CAS  Google Scholar 

  57. Whitehead, K., Kish, A., Pan M., Reiss, D.J., King, N., Hohmann, L., DiRuggiero, J. & Baliga, N.S. An integrated system approach for understanding cellular responses to gamma radiation. In press at Nature Molecular Systems Biology.

    Google Scholar 

  58. Schmid, A. K. et al. In preparation

    Google Scholar 

  59. Kaur, A. et al. (2006) Survival strategies of an archaeal halophile to withstand stress from transition metals. Genome Research. 16(7): 841–54.

    Article  PubMed  CAS  Google Scholar 

  60. Reeve, J. N., Sandman, K. & Daniels, C. J. (1997) Archaeal histones, nucleosomes, and transcription initiation. Cell 89, 999–1002.

    Article  PubMed  CAS  Google Scholar 

  61. Ouhammouch, M. & Geiduschek, E. P. (2005) An expanding family of archaeal transcriptional activators. Proc Natl Acad Sci U S A 102, 15423–8.

    Article  PubMed  CAS  Google Scholar 

  62. Baliga, N. S. et al. (2000) Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors? Mol Microbiol 36, 1184–5.

    Article  PubMed  CAS  Google Scholar 

  63. Facciotti, M. T. et al. Expansion of a family of TBP and TFIIB orthologs in an archaeal organism echoes the development of the eukaryotic basal transcription apparatus in preparation.

    Google Scholar 

  64. Fields, S. & Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–6.

    Article  PubMed  CAS  Google Scholar 

  65. Ito, T. et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98, 4569–74.

    Article  PubMed  CAS  Google Scholar 

  66. LaCount, D. J. et al. (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–7.

    Article  PubMed  CAS  Google Scholar 

  67. Rain, J. C. et al. (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–5.

    Article  PubMed  CAS  Google Scholar 

  68. Rual, J. F. et al. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–8.

    Article  PubMed  CAS  Google Scholar 

  69. Uetz, P. et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–7.

    Article  PubMed  CAS  Google Scholar 

  70. Van Criekinge, W. & Beyaert, R. (1999) Yeast Two-Hybrid: State of the Art. Biol Proced Online 2, 1–38.

    Article  PubMed  Google Scholar 

  71. Ranish, J. A. et al. (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33, 349–55.

    Article  PubMed  CAS  Google Scholar 

  72. Jonsson, U. et al. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11, 620–7.

    PubMed  CAS  Google Scholar 

  73. Conway de Macario, E., Rudofsky, U. H. & Macario, A. J. (2002) Surface plasmon resonance for measuring TBP-promoter interaction. Biochem Biophys Res Commun 298, 625–31.

    Article  PubMed  CAS  Google Scholar 

  74. Clyne, M. et al. (2004) Helicobacter pylori interacts with the human single-domain trefoil protein TFF1. Proc Natl Acad Sci U S A 101, 7409–14.

    Article  PubMed  CAS  Google Scholar 

  75. Oli, M. W., McArthur, W. P. & Brady, L. J. (2005) A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies. J Microbiol Methods.

    Google Scholar 

  76. Bonneau, R. et al. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems biology data sets. Genome Biology. 7(5) : R36.

    Article  PubMed  Google Scholar 

  77. Reiss, D. J., Bonneau, R. & Baliga, N. S. (2006) in BMC Bioinformatics 7:280.

    Google Scholar 

  78. Shannon, P., Reiss, D. J., Bonneau, R. & Baliga, N. S. (2006) Bmc Bioinformatics 7:176.

    Article  PubMed  Google Scholar 

  79. Shannon, P. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–504.

    Article  PubMed  CAS  Google Scholar 

  80. Wang, G., Kennedy, S. P., Fasiludeen, S., Rensing, C. & DasSarma, S. (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186, 3187–94.

    Article  PubMed  CAS  Google Scholar 

  81. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19, 1720–30.

    PubMed  CAS  Google Scholar 

  82. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–36.

    Article  PubMed  CAS  Google Scholar 

  83. Kislinger, T. et al. (2005) Proteome dynamics during C2C12 myoblast differentiation. Mol Cell Proteomics 4, 887–901.

    Article  PubMed  CAS  Google Scholar 

  84. Schmid, A. K. et al. (2005) Global whole-cell FTICR mass spectrometric proteomics analysis of the heat shock response in the radioresistant bacterium Deinococcus radiodurans. J Proteome Res 4, 709–18.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, Y. et al. (2002) Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A 99, 5860–5.

    Article  PubMed  CAS  Google Scholar 

  86. Pratt, J. M. et al. (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1, 579–91.

    Article  PubMed  CAS  Google Scholar 

  87. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. (2002) Stochastic gene expression in a single cell. Science 297, 1183–6.

    Article  PubMed  CAS  Google Scholar 

  88. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. (2005) Gene regulation at the single-cell level. Science 307, 1962–5.

    Article  PubMed  CAS  Google Scholar 

  89. Hasty, J., McMillen, D. & Collins, J. J. (2002) Engineered gene circuits. Nature 420, 224–30.

    Article  PubMed  CAS  Google Scholar 

  90. McDaniel, R. & Weiss, R. (2005) Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol 16, 476–83.

    Article  PubMed  CAS  Google Scholar 

  91. Gardner, T. S., Cantor, C. R. & Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–42.

    Article  PubMed  CAS  Google Scholar 

  92. Elowitz, M. B. & Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–8.

    Article  PubMed  CAS  Google Scholar 

  93. Fung, E. et al. (2005) A synthetic gene-metabolic oscillator. Nature 435, 118–22.

    Article  PubMed  CAS  Google Scholar 

  94. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607.

    Article  PubMed  CAS  Google Scholar 

  95. Kobayashi, H. et al. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101, 8414–9.

    Article  PubMed  CAS  Google Scholar 

  96. You, L., Cox, R. S., 3rd, Weiss, R. & Arnold, F. H. (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–71.

    Article  PubMed  CAS  Google Scholar 

  97. Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355, 619–27.

    Article  PubMed  CAS  Google Scholar 

  98. Nemunaitis, J. et al. (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10, 737–44.

    Article  PubMed  CAS  Google Scholar 

  99. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21, 796–802.

    Article  PubMed  CAS  Google Scholar 

  100. Weissman, K. J. & Leadlay, P. F. (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3, 925–36.

    Article  PubMed  CAS  Google Scholar 

  101. Lange, C. C., Wackett, L. P., Minton, K. W. & Daly, M. J. (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16, 929–33.

    Article  PubMed  CAS  Google Scholar 

  102. Gilbert, E. S., Walker, A. W. & Keasling, J. D. (2003) A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl Microbiol Biotechnol 61, 77–81.

    PubMed  CAS  Google Scholar 

  103. Aldor, I. S. & Keasling, J. D. (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14, 475–83.

    Article  PubMed  CAS  Google Scholar 

  104. Reguera, G. et al. (2005) Extracellular electron transfer via microbial nanowires. Nature 435, 1098–101.

    Article  PubMed  CAS  Google Scholar 

  105. Levskaya, A. et al. (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–2.

    Article  PubMed  CAS  Google Scholar 

  106. Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W. (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Schmid, A.K., Baliga, N.S. (2007). Prokaryotic Systems Biology. In: Al-Rubeai, M., Fussenegger, M. (eds) Systems Biology. Cell Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5252-9_12

Download citation

Publish with us

Policies and ethics