Advertisement

Stress and Antistress Effects of Salicylic Acid and Acetyl Salicylic Acid on Potato Culture Technology

  • H. A. Lopez-Delgado
  • I. M. Scott
  • M. E. Mora-Herrera
Chapter

Abstract

Our own research has found a number of potentially useful effects of medium supplementation with salicylate on in vitro potato microplants. These useful effects are obtained taking advantage of the stress and antistress effects of salicylic acid on plants. Growth inhibition is a common stress effect of salicylic acid on plants. This stress effect can be directed to culture technology, including promotion of in vitro tuberization and growth retardation during in vitro germplasm preservation. Antistress effects of salicylates can also be used in a planned manner to improve in vitro culture technology and hardening in potato with different applications like induction of thermotolerance during thermotherapy for virus elimination, organogenesis for micropropagation, and induction of tolerance to freezing and heat in microplants after transplanting to soil, in glasshouse trials. Tolerance to late blight (Phytophtora infestans) in potato has also been observed in field. We have also induced some of these effects in microplants by treatment with H2O2 which is consistent with evidence associating salicylate and H2O2 as endogenous signaling molecules. Stress and antistress effects appeared to be mediated by some antioxidant enzymes especially catalase, and by H2O2 accumulation. The use of salicylates would have agricultural relevance to culture technology and field crops.

Key words

Freezing tolerance growth inhibition in vitro germplasm preservation in vitro tuberization micropropagation organogenesis potato thermotolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, C.J., Orlandi, E.W., and Mock, N.M., 1993. Harpin. an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production of suspension cells. Plant Physiol., 102: 1341-1344.PubMedGoogle Scholar
  2. Bernard, F., Shaker-Bazarnov, H., and Kaviani, B., 2002. Effects of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). Euphytica, 123: 85-88.CrossRefGoogle Scholar
  3. Carswell, G.K., Johnson, C.M., Shillito, R.D., and Harms, C.T., 1989. O-acetyl-salicylic acid promotes colony formation from protoplasts of an elite maize inbred. Plant Cell Rep., 8: 282-284.CrossRefGoogle Scholar
  4. Chamnongpol, S., Willekens, H., Langebartels, C., Van Montagu, M., Inzé, D., and van Camp, W., 1996. Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. The Plant J., 10: 491-503CrossRefGoogle Scholar
  5. Chen, Z. X., Malamy, J., Henning, J., Conrath, U., Sanchez-Casas, P., Silva H., Ricigliano J., and Klessig, D.F., 1995. Induction, modification, and transduction of the salicylic acid signal in plant defence responses. Proc. Natl. Acad. Sci. USA., 92: 4134-4137.PubMedCrossRefGoogle Scholar
  6. Chen, Z., Silva, H., and Klessig, D.F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883-1886.PubMedCrossRefGoogle Scholar
  7. Cleland, C.F., and Ben-Tal, Y., 1982. Influence of giving salicylic acid for different time periods on flowering and growth in the long-day plant Lemna gibba G3. Plant Physiol., 70: 287-290.PubMedGoogle Scholar
  8. Conrath, U., Chen, Z., Ricigliano, J.R., and Klessig, D.F., 1995. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA., 92: 7143-7147.PubMedCrossRefGoogle Scholar
  9. Dat, J.F., López-Delgado, H., Foyer, C. H., and Scott, I. M., 2000. Effects of salicylic acid oxidative stress and thermotolerance in tobacco. J.Plant Physiol., 156: 659-665.Google Scholar
  10. Dat, J.F., López-Delgado, H., Foyer, C.H., and Scott, I.M., 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol., 116: 1351-1357.CrossRefPubMedGoogle Scholar
  11. Demprey, J., and Klessig, D.F., 1994. Salicylic acid, activate oxygen species and systemic acquired resistance in plants. Trends Cell Biol., 4: 334-338.CrossRefGoogle Scholar
  12. Ding CK, Wang CY, Gross KC, Smith DL, 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214: 895-901PubMedCrossRefGoogle Scholar
  13. Dodds, J.H., Huaman, Z., and Lizarraga, R., 1991. Potato germplasm conservation, In: J.H. Dodds ed., In vitro methods for conservation of plant Genetic Resources, Chapman and Hall, London, 93-109.Google Scholar
  14. Estrada, R., Tovar, P., and Dodds, J.H., 1986. Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tiss. Org. Cult., 7: 3-10.CrossRefGoogle Scholar
  15. Faccioli, G., and Colombarini, A., 1996. Correlation of potato virus S and virus M contents of potato meristem tips with the percentage of virus-free plantlets produced in vitro. Potato Res., 39: 129-140.CrossRefGoogle Scholar
  16. Fletcher, P.J., Fletcher, J.D., and Cross, R. J., 1998. Potato germoplasm: in vitro storage and virus reduction. New Zeland J Crop Hort Sci., 26: 249-252.Google Scholar
  17. Flores-Tena, J., 1993. Efecto de tres salicilatos en el desarrollo de plantas de Solanum tuberosum cultivadas in vitro, ENEP Iztacala, Universidad Nacional Autonoma de México, Bachelor , 119 pp Thesis.Google Scholar
  18. Foyer, C. H., Lopez-Delgado, H., Dat, J. F., and Scott, I. M., 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant., 100: 241-254.CrossRefGoogle Scholar
  19. Fry, W.E., 1978. Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late bight. Phytopath., 68: 1650-1655.Google Scholar
  20. Galindo, A.J., 1982. La papita güera. Naturaleza, 13: 175-180.Google Scholar
  21. Garner, N., and Blake, J., 1989. The induction and development of potato microtubers in vitro on media free of growth regulating substances. Ann. Bot., 63: 663-674.Google Scholar
  22. Gazarayan, I.G., Lagrimini, L. M., Asby, G.A., and Thorneley, R. N.F., 1996. Mechanisms of indole-3-acetic-acid oxidation by plant peroxidases- anaerobic stoped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J., 313: 841-847.Google Scholar
  23. Gray, D., and Hughes, J.G., 1978. Tuber quality. In: The potato crop, P.M., Harris (ed.)., XIII. Chapman and Hill, London, pp 111.Google Scholar
  24. Harding, K., 1991. Molecular stability of the ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservation. Euphytica, 55: 141-146.CrossRefGoogle Scholar
  25. Harding, K., 1994. The methylation status of DNA derived from potato plants recovered from slow growth. Plant Cell Tiss. Org. Cult., 37: 31-38.CrossRefGoogle Scholar
  26. Hussey, G., and Stacey, N.J., 1984. Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Ann. Bot., 53: 565-578.Google Scholar
  27. Jain, A., and Srivastava, H.S., 1981. Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol. Plant., 51: 339-342.CrossRefGoogle Scholar
  28. Janda T, Szalai G, Tari I, Paldi E, 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208: 175-180CrossRefGoogle Scholar
  29. Janda, T., Szalai, G., Antunovics, Z., Horváth, E.and Páldi, E., 2000. Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica, 45: 29-33.Google Scholar
  30. Kang, G.Z., Wang, Z.X., and Sun, G.C., 2003. Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot. Sin., 45: 567-573Google Scholar
  31. Kang, H.M., and Saltveit, M.E., 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant., 115: 571-576PubMedCrossRefGoogle Scholar
  32. Kauss, H., and Jeblick, W., 1996. Influence of salicylic acid on the induction of competence for H2O2 elicitation. Plant Physiol., 111: 755-763PubMedGoogle Scholar
  33. Kefeli, V.I., and Kutacek, M., 1977. Phenolic substances and their possible role in plant growth regulation, In: Plant growth regulation, P.E. Pilet ed., Springer-Verlag, Berlin, pp 181-188.Google Scholar
  34. Koda, Y., Takahashi, K., and Kikuta, Y., 1992. Potato tuber-inducing activities of salicylic acid and related compounds. J. Plant Growth Regul., 11: 215-219.CrossRefGoogle Scholar
  35. Kwiatkowski, S., Martin, M.W., Brown, Ch.R., and Sluis, C.J., 1988. Serial microtuber formation as a long-term conservation method for in vitro potato germplasm. Am. Potato J., 65: 369-375.Google Scholar
  36. Larkindale, J., and Knight, M.R., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol., 128: 682-695.PubMedCrossRefGoogle Scholar
  37. Larry, P., Barker, G.W., and Howarth, M.J., 1985. Development and structure of tubers, In: Potato Physiology Li P.H. ed., Academic Press Inc. USA. pp 123-148.Google Scholar
  38. Levine, A., Tenhaken, R., Dixon, R., and Lamb, C., 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583-593.PubMedCrossRefGoogle Scholar
  39. Lizarraga, R., Huaman, Z., and Dodds, J.H., 1989. In vitro conservation of potato germplasm at the International Potato Center. Amer. Potato J., 66: 253-269.Google Scholar
  40. López-Delgado H., and Scott I.M., 1997. Induction of in vitro tuberization of potato microplants by acetylsalicylic acid. J. Plant Physiol, 151: 74-78Google Scholar
  41. López-Delgado, H, Dat, J.F., Foyer, C.H., and Scott, I.M., 1998a.Induction of thermotolerance in potato micro-plants by acetylsalicylic acid and H2O2. J. Exp. Bot., 49: 713-720.CrossRefGoogle Scholar
  42. Löpez-Delgado, H., Jimenez-Casas, M., and Scott, I.M., 1998b.Storage of potato micro-plants in vitro in the presence of acetyl salicylic acid. Plant Cell. Tiss. and Org. Cult., 54:145-152.CrossRefGoogle Scholar
  43. Lopez-Delgado, H., 1993. Micropropagación de papa, Annual report, Programa Nacional de Papa, Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP), México: Metepec.Google Scholar
  44. Lopez-Delgado, H., and Carrillo-Castaneda, G., 1996. Acetylsalicylic acid: its effects on a highly expressed phosphatase from Solanum cardiophyllum. Biotecnologia Aplicada, 13: 186-189.Google Scholar
  45. Lopez-Delgado, H., Lopez-Peralta, C.G., Villalobos-Arambula, V.M., and Larque-Saavedra, A., 1990. Efecto del acido acetil salicilico en el crecimiento de yemas de Solanum cardiophyllum cultivadas in vitro. Agrociencia serie Fitociencia 1: 145-159.Google Scholar
  46. Löpez-Delgado, H., Mora-Herrera, M.E., Zavaleta-Mancera, H.A., Cadena-Hinojosa, M., and Scott, I.M., 2004. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. Am. J. Potato Res 81: 171-176.CrossRefGoogle Scholar
  47. Lopez-Delgado, H.. 1987. Efecto del acido acetil salicilico en el crecimiento de yemas de Solanum cardiophyllum (Lindl.) cultivadas in vitro, Tesis de Maestria en Ciencias, Colegio de Postgraduados, México: Chapingo, 86p.Google Scholar
  48. Low, P.S., and Merida, J.R., 1996. The oxidative burst in plant defense: function and signal transduction. Physiol Plant., 96: 533-542.CrossRefGoogle Scholar
  49. Luna, C.M., Pastori, G.M., Driscoll, S., Groten, K., Bernard, S., and Foyer, C. H., 2004. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot., 56: 417-123.PubMedCrossRefGoogle Scholar
  50. Manthe, B., Schulz, M., and Schnabl, H., 1992. Effects of salicylic acid on growth and stomatal movements of Vicia faba: evidence for salicylic acid metabolization. J. Chem. Ecol., 18: 1525-1539.CrossRefGoogle Scholar
  51. Marin-Fuentes, S., 1992. Organogenesis in vitro y termoterapia para la obtencion de plantas de Solanum tuberosum libres de virus X, Facultad de Ciencias, Universidad Nacional Autonoma de México, Bachelor Thesis, 69 pp.Google Scholar
  52. Mora-Herrera, M., 1991. Efecto del acido acetil salicilico en el crecimiento de yemas axilares de Solanum tuberosum cultivadas in vitro. Bachelor Thesis, Facultad de Ciencias, Universidad Nacional Autonoma de México, 115pp.Google Scholar
  53. Mora-Herrera,M., Lòpez-Delgado, H., Castillo-Morales A., and Foyer Ch. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol. Plant. (In Press)Google Scholar
  54. Mur, L.A.J., Darby, S. F., and Draper, J. 1997. Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in tobacco. Plant J., 12: 1113-1126.PubMedCrossRefGoogle Scholar
  55. Murashige, T., and Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15: 473-497.CrossRefGoogle Scholar
  56. Murphy, A.M.., and Carr, J.P., 2002. Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol, 128: 552-563.PubMedCrossRefGoogle Scholar
  57. Neill, S.J., Desikan, R., and Hancock, J., 2002b. Hydrogen peroxide signalling. Current Opinion in Plant Biology., 5: 388-395.CrossRefGoogle Scholar
  58. Neill, S.J., Desikan, R., Clarke, A., Hurst, D., and Hancock, J.T., 2002a. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J.Exp. Bot., 53: 1237-1247.CrossRefGoogle Scholar
  59. Ng, S.Y.C., and Ng, N.Q., 1991. Reduced-growth storage of germplasm. In:J.H. Dodds e., In vitro methods for conservation of plant genetic resources, Chapman and Hall, London, 11-39.Google Scholar
  60. Nickell, G.L., 1991. Aspirin and sulfanilamide improve processed potato quality, Proceedings 18th Annual Meeting Plant Growth Regulators Society of America, pp 115-120.Google Scholar
  61. Niederhauser, J.S., and Mills, W.R., 1953. Resistance of Solanum species to Phytophthora infestans in Mexico. Phytopath, 43: 456-457.Google Scholar
  62. Normanly, J., Slovin, J.P., and Cohen, J.D., 1995.Rethinking auxin biosynthesis and metabolism. Plant Physiol., 107: 323-329.PubMedGoogle Scholar
  63. Pastori, G.M., and Foyer, C.H., 2002. Common components, networks and pathways of cross tolerance to stress: the central role of “Redox” and ABA-mediated controls. Plant Physiol., 129: 460-468.PubMedCrossRefGoogle Scholar
  64. Pelacho, A.M., a.Martin-Closas, L., Campabadal, C., Torres, A., Farran, I., and Mingo-Castel, A.M., 1994. In vitro tuberization of potato: effect of several morphogenic regulators in light and darkness. J. Plant Physiol., 144: 705-709.Google Scholar
  65. Pierpoint, W.S., 1994. Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv. Bot. Res, 20: 165-235.Google Scholar
  66. Prasad, T.K., Anderson, M.D., Martin, B.A., and Stewart, C.R., 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65-74.PubMedCrossRefGoogle Scholar
  67. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B., 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2–metabolizing enzymes. Plant Physiol, 115: 137-149.PubMedCrossRefGoogle Scholar
  68. Roca, W.M., Chavez, R., Martin, M.L., Arias, D.I., Mafla, G., and Reyes, R., 1989. In vitro methods of germ-plasm conservation. Genome, 31: 813-817.Google Scholar
  69. Roggero, P., and Pennazio, S., 1988. Effects of salicylate on systemic invasion of tobacco plants by various viruses. J. Phytopath, 123: 207-216.Google Scholar
  70. Rosenberg, V., 2000. The virus eradication of seed potato initial material. Plant Breed. Seed Prod, 8:161-166.Google Scholar
  71. Salazar, L., and Jayasinghe, U., 1996. Techniques in plant virology in CIP. International Potato Center (CIP), Peru: Lima.Google Scholar
  72. 72 Sànchez, G.E., Slack, S.A., and Dodds, J.H. 1991. Response of selected Solanum species to virus eradication therapy. Am. Potato J., 68: 299-315.Google Scholar
  73. Sano, H., and Ohashi, Y., 1995. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc. Natl. Acad. Sci. USA., 92: 4138-4144.PubMedCrossRefGoogle Scholar
  74. Saxena, P.K., and Rashid, A., 1980. Differentiation of bud-cells on the protonema of the moss Anoectangium thomosonii, Effect of aspirin and salicylic acid. Z. Pflanzenphysiol., 99: 187-189.Google Scholar
  75. Scebba. F., Sebastiani. L., and Vitagliano. C., 1998. Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation. Physiol. Plant, 104: 747-752.CrossRefGoogle Scholar
  76. Senaratna, T., Touchell, D., Bunn, E., and Dixon, K., 2000. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul, 30: 157-161CrossRefGoogle Scholar
  77. Shetty, K., Shetty, G.A., Nakaazaki, Y., Yoshioka, K., Asano, Y., andOoosawa, K., 1992. Stimulation of benzyladenine-induced in vitro shoot organogenesis in Cucumis melo L. by proline, salicylic acid and aspirin. Plant Sci., 84: 193-199.CrossRefGoogle Scholar
  78. Smith, R.D., Wilson, J.E., Walker, J.C., and Baskin, T.I., 1994. Protein-phosphatase inhibitors block root hair growth and alter cortical cell shape of Arabidopsis roots. Planta, 194: 516-524.Google Scholar
  79. Stallknecht, G.F., 1972. Coumarin induced tuber formation on excised shoots of Solanum tuberosum cultured in vitro. Plant Physiol, 50: 412-413.PubMedGoogle Scholar
  80. Sudha, G., and Ravishankar, G. A., 2002 . Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tiss. Org. Cult, 71: 181-212.CrossRefGoogle Scholar
  81. Suttle, J.C., and Hulstrand, J.F. 1994. Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol., 105: 891-896.PubMedGoogle Scholar
  82. Szalai G, Tari, I., Janda, T., Pestenacz, A., and Paldi, E., 2000. Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biol Plant, 43: 637-640CrossRefGoogle Scholar
  83. Takahashi, H., Miller, J., Nozaki, Y., Sukamto, Takeda, M., Shah, J., Hase, S., Ikegami, M., Ehara, Y., and Dinesh-Kumar, S.P., 2002. RCY1, and Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and novel signal transduction mechanism. Plant J., 32: 655-667.PubMedCrossRefGoogle Scholar
  84. Tasgin, E., Atici, O., and Nalbantoglu, B., 2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul, 41: 231-236CrossRefGoogle Scholar
  85. van Es, A., and Hartmans, K.J. 1981. Structure and chemical composition of potato. In: Storage of Potatoes, Rastovski A. van Es A. eds., Centre for Agricultural Publishing and documentation, Wageningen, pp 17-81.Google Scholar
  86. Villaseca, J.C.B., 1999. Efecto del ácido acetil salicílico y peróxido de hidrógeno sobre algunos componentes del rendimiento y en la tolerancia al tizón tardío Phytophthora infestans (Mont.) de bary en papa Solanum tuberosum L. Bachelor Thesis, Facultad de Ciencias, Universidad Autónoma del Estado de México, 83pp.Google Scholar
  87. Vreugdenhil, D., and Struik, P.C., 1989. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiol. Plant., 75: 525-531.CrossRefGoogle Scholar
  88. Vreugdenhil, D., and van Dijk, W., 1989. Effects of ethylene on the tuberization of potato (Solanum tuberosum) cuttings. Plant Growth Regul., 8: 31-39.Google Scholar
  89. Wang, P., and Hu, Ch., 1985. Potato tissue culture and its applications in agriculture, In: Potato Physiology Li P.H. ed., Academic Press, USA: Florida, 503-577.Google Scholar
  90. Westcott, R.J., 1981. Tissue culture storage of potato germplasm, 2. use of growth retardants. Potato Res., 24: 343-352.CrossRefGoogle Scholar
  91. Withers, L.A., Wheelans, S.K., and Williams, J.T., 1990. In vitro conservation of crop germplasm and the IBPGR databases. Euphytica, 54: 9-22.Google Scholar
  92. Zaitlin, M., and Palukaitis, P., 2000. Advances in understanding plant viruses and viruses diseases. Annu Rev Phytopath, 38:117-143.CrossRefGoogle Scholar
  93. Zheng, X., and van Huystee, R.B., 1992. Anionic peroxidase catalysed ascorbic acid and IAA oxidation in the presence of hydrogen peroxide: a defence against peroxidative stress in peanut plant. Phytochem., 31: 1895-1898.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H. A. Lopez-Delgado
    • 1
  • I. M. Scott
    • 2
  • M. E. Mora-Herrera
    • 1
  1. 1.Programa Nacional de PapaInstituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP)Metepec, MéxMéxico
  2. 2.Institute of Biological SciencesUniversity of WalesAberystwyth, CeredigionUK

Personalised recommendations