Salicylic Acid in Plant Disease Resistance

  • Ratnesh Chaturvedi
  • Jyoti Shah


Salicylic acid (SA) plays an important role in plant defense. Its role in plant disease resistance is well documented for dicotyledonous plants, where it is required for basal resistance against pathogens as well as for the inducible defense mechanism, systemic acquired resistance (SAR), which confers resistance against a broad-spectrum of pathogens. The activation of SAR is associated with the heightened level of expression of the pathogenesis-related proteins, some of which possess antimicrobial activity. Studies in the model plant Arabidopsis thaliana have provided important insights into the mechanism of SA signaling in plant defense. The NPR1 protein is an important component of SA signaling in Arabidopsis. Homologues of NPR1 are present in other plant species. NPR1 is also required for plant defense mechanisms that do not require SA. Hence, NPR1 provides an important link between different defense mechanisms. Similarly, cross talk between SA and other defense signaling pathways results in the fine-tuning of plant defense response. Recent discoveries have implicated an important role for lipids in SA signaling. We discuss the progress made in understanding SA biosynthesis and signaling, its cross talk with other mechanisms in plant defense and the practical utility in targeting this defense mechanism for enhancing disease resistance.

Key words

Cross talk engineering disease resistance pathogenesis-related pathogen resistance plant defense systemic acquired resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, A. C., and Fluhr, R., 1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 9: 1559-1572.PubMedCrossRefGoogle Scholar
  2. Anderson, M. D., Chen, Z., and Klessig, D. F., 1998. Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR1 gene expression. Phytochem., 47: 555-566.CrossRefGoogle Scholar
  3. Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis., 88: 669-673.CrossRefGoogle Scholar
  4. Antoniw, J. F., and White, R. F., 1980. The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol. Z., 98: 331-341.Google Scholar
  5. Beffa, R., Szell, M., Meuwly, P., Pay, A., Vögeli-Lange, R., Métraux, J.-P., Neuhaus, G., Meins, F. Jr., and Nagy, F., 1995. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J., 14: 5753-5761.PubMedGoogle Scholar
  6. Belkhadir, Y., Subramaniam, R., and Dangl, J. L., 2004. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin Plant Biol., 7: 391-399.PubMedCrossRefGoogle Scholar
  7. Belfanti, E., Silfverberg-Dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., Vinatzer, B. A., Gianfransceschi, L., Gessler, C., and Sansavini, S., 2004, The HcrVf2gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Natl. Acad. Sci. USA., 101: 886–890.PubMedCrossRefGoogle Scholar
  8. Bi, Y. M., Kenton, P., Mur, L., Darby, R., and Draper, J., 1995. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J., 8: 235-245.PubMedCrossRefGoogle Scholar
  9. Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., and Dong, X., 1994. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6: 1845-1857.PubMedCrossRefGoogle Scholar
  10. Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., and Dong, X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 9: 1573-1584.PubMedCrossRefGoogle Scholar
  11. Bostock, R. M., 2005. Crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopath., 43: 545–580.CrossRefGoogle Scholar
  12. Brodersen, P., Petersen, M., Pike, M. H., Olszak, B., Skov, S., Odum, N., Jorgensen, L. B., Brown, R. E., and Mundy, J., 2002. Knockout of Arabidopsis ACCELERATED-CELL DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev., 16: 490-502.PubMedCrossRefGoogle Scholar
  13. Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X., 1994. Characterization of an Arabidopsismutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 6: 1583-1592.PubMedCrossRefGoogle Scholar
  14. Cao, H., Glazebrook, J., Clark, J. D., Volko, S., and Dong, X., 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88: 57-63.PubMedCrossRefGoogle Scholar
  15. Cao, H., Li, X., and Dong, X., 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA., 95: 6531-6536.PubMedCrossRefGoogle Scholar
  16. Chamnongpol, S., Willekens H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu M., Inze, D., and Van Camp, W., 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA., 95: 588-1823.CrossRefGoogle Scholar
  17. Chandra-Shekara A. C., Navarre, D., Kachroo, A., Kang, H. G., Klessig, D., and Kachroo, P., 2004. Signaling requirements and role of salicylic acid in HRT-and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J., 40: 647-659.PubMedCrossRefGoogle Scholar
  18. Chen, F., D’Auria, J. C., Tholl, D., Ross, J. R.., Gerzhenzon, J., Noel, J. P., and Pichersky, E., 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J., 36: 577-588.PubMedCrossRefGoogle Scholar
  19. Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., and Fan, B., 1997. Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissue. Plant Physiol., 114: 193-201.PubMedCrossRefGoogle Scholar
  20. Chen, Z., Silva, H., and Klessig, D. F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883–1886.PubMedCrossRefGoogle Scholar
  21. Chern, M. S., Fitzgerald, H. A., Yadav, R. C., Canlas, P.E., Dong, X. N., and Ronald, P. C., 2001. Evidence for a disease-resistance pathway in rice similar to the NPR1- mediated signaling pathway in Arabidopsis. Plant J., 27: 101–113.PubMedCrossRefGoogle Scholar
  22. Chern, M. S., Fitzgerald, H. A., Yadav, R. C., Canlas, P. E., Navarre, D. A., and Ronald, P. C., 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Micro. Int., 18: 511-520.CrossRefGoogle Scholar
  23. Cipollini, D.F., 2002. Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oceologia, 131: 514–520.CrossRefGoogle Scholar
  24. Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., and Dong, X., 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell, 12: 2175–2190.PubMedCrossRefGoogle Scholar
  25. Coquoz, J. L., Buchala, A., and Métraux, P., 1995. Arachidonic acid induces local but not systemic synthesis of salicylic acid and confers systemic resistance in potato plants to Phytophthora infestans and Alternaria solani. Phytopath.,85: 1219– 1224CrossRefGoogle Scholar
  26. Chong, J. Marie-Agnés Pierrel, M.A., Atanassova, R., Reichhart, D.W., Fritig, B., and Saindrenan, P., 2001. Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol., 125: 318–328.PubMedCrossRefGoogle Scholar
  27. Dangl, J. L., and Jones, J. D. G., 2001. Plant pathogens and integrated defense responses to infection. Nature, 411: 826-833.PubMedCrossRefGoogle Scholar
  28. Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J., 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247–1250.CrossRefPubMedGoogle Scholar
  29. Delaney, T.P., Friedrich, L., and Ryals, J.A., 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA., 92: 6602-6606.PubMedCrossRefGoogle Scholar
  30. Dempsey, D.A., Shah. J., and Klessig, D. F., 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci., 18: 547-575.Google Scholar
  31. Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., and Fobert, P. R., 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15: 2181–2191.PubMedCrossRefGoogle Scholar
  32. Després, C., De Long, C., Glaze, S., Liu, E., and Fobert, P.R., 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGAfamily of bZIP transcription factors. Plant Cell, 12: 279-290.PubMedCrossRefGoogle Scholar
  33. Devadas, S. K., Enyedi, A., and Raina, R., 2002. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signaling in cell death and defence against pathogens. Plant J., 30: 467–80.PubMedCrossRefGoogle Scholar
  34. Desveaux, D., Allard, J., Brisson, N., and Sygusch, J., 2002. A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat. Str. Biol., 9: 512-517.CrossRefGoogle Scholar
  35. Desveaux, D., Subramaniam, R., Després, C., Mess, J. N., Lévesque, C. L., Fobert, P. R., Dangl, J. L., and Brisson, N., 2004. A “Whirly” Transcription Factor Is Required for Salicylic Acid-Dependent Disease Resistance in Arabidopsis. Dev. Cell, 6: 229–240.PubMedCrossRefGoogle Scholar
  36. Devoto, A., and Turner, J. G., 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot., 92: 329–337.PubMedCrossRefGoogle Scholar
  37. Doares, S. H., Narvaez-Vasquez, J., Conconi, A., and Ryan, C., 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol., 108: 1741– 1746.PubMedGoogle Scholar
  38. Doherty, H., Selvendran, R., and Bowles, D., 1988. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol. Mol. Plant Pathol., 33: 377–384.CrossRefGoogle Scholar
  39. Dong, X. N., 2004. NPR1, all things considered. Curr. Opin. Plant Biol., 7:547– 552PubMedCrossRefGoogle Scholar
  40. Du, H., and Klessig, D. F. 1997. Identification of a soluble, high-affinity salicylic acid binding protein in tobacco. Plant Physiol., 113: 1319–1327.PubMedGoogle Scholar
  41. Durner, J., and Klessig, D. F., 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2, 6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA., 92: 11312–11316.PubMedCrossRefGoogle Scholar
  42. Durrant, W. E., and Dong, X., 2004. Systemic acquired resistance. Annu. Rev. Phytopath., 42: 185–209.CrossRefGoogle Scholar
  43. Enyedi, A. J., and Raskin, I., 1993. Induction of UDP-glucose salicylic acid and glucosyltransferaase activity in tobacco mosaic virus-inoculated tobacco Nicotiana tabacumleaves. Plant Physiol., 101: 1375-1380.PubMedGoogle Scholar
  44. Falk, A., Feys, B. J., Frost, L. N., Jones, J. D.G., Daniels, M. J., and Parker, J. E., 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsishas homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA., 96: 3292–3297.PubMedCrossRefGoogle Scholar
  45. Felton, G. W., and Korth, K. L., 2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol., 3: 309–314.PubMedCrossRefGoogle Scholar
  46. Feys, B.J., Wiermer, M., Bhat, A., R., Lisa J. Moisan, J. M., Escobar, M. N., Neu, C., Cabral, A., and Parker, J. E., 2005. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell., 17: 2601–2613.PubMedCrossRefGoogle Scholar
  47. Feys, B. J., Moisan, L. J., Newman, M. A., and Parker, J. E., 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. Embo. J., 20: 5400-5411.PubMedCrossRefGoogle Scholar
  48. Fitzgerald, H. A., Chern, M. S., Navarre, R., and Ronald. P. C., 2004. Overexpression of (At)NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol. Plant-Microbe Inter., 17: 140-151.CrossRefGoogle Scholar
  49. Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, W.S., Chiang, Y., Acton, B. T., MontelioneT.G., Pichersky, E., Klessig, D.F., and Tong, L., 2005. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl. Acad. Sci. USA., 102: 1773-1778.PubMedCrossRefGoogle Scholar
  50. Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals , J., 2001. NIM1overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant Microbe Inter., 14: 1114–1124.CrossRefGoogle Scholar
  51. Friedrich, L., Lawton, K., Reuss, W., Masner, P., Specker, N., Friedrich, L. N., Lawton, K., Ruess,W., Masner, P., Specker, N., Gut-Rella, M., Meier, B., Dincher, S., Staub, T., Uknes, S, Métraux, J. P., Kessmann, H., and Ryals, J., 1996. A benzothiadiazole induces systemic acquired resistance in tobacco. Plant J., 10: 61–70.CrossRefGoogle Scholar
  52. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye. G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J., 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261: 754–756.CrossRefPubMedGoogle Scholar
  53. Genoud, T., Buchala, A.J., Chua, N.-H., and Métraux, J.-P., 2002. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J., 31: 87-95.PubMedCrossRefGoogle Scholar
  54. Gilbert, R. D., Johnson, A. N., and Dean, R. A., 1996. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol. Mol. Plant Pathol., 48: 335–346.CrossRefGoogle Scholar
  55. Glazebrook, J., Chen, W. J., Estes, B., Chang, H. S., Nawrath, C., Métraux, J. P., Zhuand, T., and Katagiri, F., 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J., 34: 217-228.PubMedCrossRefGoogle Scholar
  56. Glazebrook, J., Rogers, E. E., and Ausubel, F. M., 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics, 143: 973–982.PubMedGoogle Scholar
  57. Gomez-Gomez, L., and Boller, T., 2002. Flagellin perception: a paradigm for innate immunity. Tren. Plant. Sci., 6: 251–256.CrossRefGoogle Scholar
  58. Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorop, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J., 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8: 629–643.PubMedCrossRefGoogle Scholar
  59. Guedes, M.E.M., Richmond, S., and Kuc, J., 1980. Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and the onset of flowering and fruiting. Physiol. Plant Pathol., 17: 229–233.CrossRefGoogle Scholar
  60. Gupta, V., Willits, M.G., and Glazebrook, J., 2000. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA. Mol. Plant Microbe Inter., 13: 503–511.CrossRefGoogle Scholar
  61. Heil, M., 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol., 5: 345–350.PubMedCrossRefGoogle Scholar
  62. Heil, M., and Baldwin, I. T., 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Tren. Plant Sci., 7: 61–67.CrossRefGoogle Scholar
  63. Heil, M., and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot., 89: 503–512.PubMedCrossRefGoogle Scholar
  64. Heil, M., Hilpert, A., Kaiser, W., and Linsenmair, K. E., 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol., 88: 645–654.CrossRefGoogle Scholar
  65. Hennig, J., Malamy, J., Grynkiewicz, G., Indulski, J., and Klessig, D. F. 1993. Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J., 4: 593-600.PubMedCrossRefGoogle Scholar
  66. Hua, J., Grisafi, P., Cheng, S. H., and Fink, G. R., 2001. Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev., 15: 2263–2272.PubMedCrossRefGoogle Scholar
  67. Johnson, C., Boden, E., and Arias, J., 2003. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 15: 1846–1858.PubMedCrossRefGoogle Scholar
  68. Jones, J. D., 2001. Putting knowledge of plant disease resistance genes to work. Curr. Opin. Plant. Biol., 4: 281-287.PubMedCrossRefGoogle Scholar
  69. Kachroo, P., Kachroo, A., Lapchyk, L., Hildebrand, D., and Klessig, D. F., 2003. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol. Plant-Microbe. Inter., 16: 1022–1029.CrossRefGoogle Scholar
  70. Kachroo, P., Shanklin, J., Shah, J., Whittle, E. J., and Klessig, D.F., 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA., 98: 9448-9453.PubMedCrossRefGoogle Scholar
  71. Kiefer, I. W., and Slusarenko, A.J., 2003. The pattern of systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation. Plant Physiol., 132: 840–847.PubMedCrossRefGoogle Scholar
  72. Kinkema, M., Fan, W., and Dong, X., 2000. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 12: 2339–2350.PubMedCrossRefGoogle Scholar
  73. Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., and Kunkel, B.N., 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms Plant J., 26: 509- 522.PubMedCrossRefGoogle Scholar
  74. Kogel, K.-H., Beckhove, U., Dreschers, J., Münch, S., and Rommé, Y., 1994. Acquired resistance in barley. Plant Physiol., 106: 1269-1277.PubMedGoogle Scholar
  75. Kogel, K.-H., and Langen, G., 2005. Induced disease resistance and gene expression in cereals. Cell. Microbiol., 7: 1555-1564.PubMedCrossRefGoogle Scholar
  76. Kohler, A., Schwindling, S., and Conrath U., 2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves require the NPR1/NIM1 gene in Arabidopsis. Plant Physiol., 128: 1046–1056.PubMedCrossRefGoogle Scholar
  77. Kumar, D., and Klessig, D.F., 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc. Natl. Acad. Sci. USA., 100: 16101-16106.PubMedCrossRefGoogle Scholar
  78. Kunkel, B. N., and Brooks, D. M., 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol., 5: 325–331.PubMedCrossRefGoogle Scholar
  79. Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K., 2002. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell, 14: 479-490.PubMedCrossRefGoogle Scholar
  80. Lam, E., 2004. Controlled cell death, plant survival and development. Nature Rev. Mol. Cell. Biol., 5: 305–315.CrossRefGoogle Scholar
  81. Lam, E., Kato, N., and Lawton, M., 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411: 848–853.PubMedCrossRefGoogle Scholar
  82. Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J., 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J., 10: 71–82.PubMedCrossRefGoogle Scholar
  83. Léon, J., Lawton, M.A., and Raskin, I., 1995a. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol., 108: 1673–1678.Google Scholar
  84. Léon, J., Shulaev, V., Yalpani, N., Lawton, M. A., and Raskin, I., 1995b. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc. Natl. Acad. Sci. USA., 92: 10413-10417.CrossRefGoogle Scholar
  85. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E., 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 16: 223-233.PubMedCrossRefGoogle Scholar
  86. Lee, H. I., Leon, J., and Raskin, I., 1995. Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA., 92: 4076-4079.PubMedCrossRefGoogle Scholar
  87. Li, J., Brader, G., and Palva, E. T., 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 16: 319–331.PubMedCrossRefGoogle Scholar
  88. Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X., 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell, 98: 329-339.PubMedCrossRefGoogle Scholar
  89. Lin, W.C., Lu, C. F., Wu, J. W., Cheng , M. L., Lin, Y. M., Yang, N. S., Black, L., Green, S. K., Wang, J. F., and Cheng, C.P., 2004. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res., 13: 567-581.PubMedCrossRefGoogle Scholar
  90. Lou, Y. G., and Baldwin, I. T., 2004. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses to Nicotiana attenuata. Plant Physiol., 135: 496–506.PubMedCrossRefGoogle Scholar
  91. Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N., and Shah, J., 2006. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant-Microbe Inter., 19: 123-129.CrossRefGoogle Scholar
  92. Malamy, J., Carr, J.P. and Klessig, D.F., and Raskin, I., 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250: 1002–1004.CrossRefPubMedGoogle Scholar
  93. Malamy, J., and Klessig, D. F., 1992. Salicylic acid and plant disease resistance. Plant J., 2: 643-654.Google Scholar
  94. Maldonado, A.M., Doerner, P., Dixon, R. A., Lamb, C. J., and Cameron, R. K., 2002. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 419: 399–403.PubMedCrossRefGoogle Scholar
  95. Mateo, A., Mühlenbock, P., Rustérucci, C., Chi-Chen Chang, C., Miszalski, Z., Karpinska, B., Parker, J. E., Mullineaux, P. M., and Karpinski, S., 2004. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol., 136: 2818-2830.PubMedCrossRefGoogle Scholar
  96. Mauch-Mani, B., and Slusarenko, A.J., 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8: 203-212.PubMedCrossRefGoogle Scholar
  97. Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., and Reimmann, C., 2001. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J., 25: 62-77.CrossRefGoogle Scholar
  98. McDowell, M.J., and Woffenden, J.B., 2003. Plant disease resistance genes: recent insights and potential applications. Trend. Biotech., 21: 178-183.CrossRefGoogle Scholar
  99. Métraux , J. P., 2002. Recent breakthroughs in the study of salicylic acid biosynthesis. Tren. Plant. Sci. 7: 332-334.CrossRefGoogle Scholar
  100. Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B., 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250: 1004–1006.CrossRefPubMedGoogle Scholar
  101. Meuwly, P., Mölders, W., Buchala, A., and Métraux, J. P. 1995. Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol., 109: 1107-1114.PubMedGoogle Scholar
  102. Mitchell, J.A., Akarasereenont, P., Thiemermann, C., Flower, R.J., and Vane, J.R., 1993. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA., 90: 11693-11697.PubMedCrossRefGoogle Scholar
  103. Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Tren. Plant. Sci., 7: 405-410.CrossRefGoogle Scholar
  104. Mou, Z., Fan, W.H., and Dong, X.N., 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113: 935–944.PubMedCrossRefGoogle Scholar
  105. Mölders, W., Buchala, A., and Métraux, J.-P., 1996. Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol., 112: 787-792.PubMedGoogle Scholar
  106. Morris, S.W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C.C., Frederiksen, R.A., Bhandhufalck, A., Hulbert, S., and Uknes, S., 1998. Induced resistance responses in maize. Mol. Plant-Microbe Inter., 11: 643-658.CrossRefGoogle Scholar
  107. Nandi, A., Moeder, W., Kachroo, P., Klessig, D. F., and Shah, J., 2005. The Arabidopsis ssi2-conferred susceptibility to Botrytis cinereais dependent on EDS5and PAD4. Mol. Plant-Microbe Interact., 18: 363–370.CrossRefGoogle Scholar
  108. Nandi, A., Welti, R., and Shah, J., 2004. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY 1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell, 16: 465–477.PubMedCrossRefGoogle Scholar
  109. Nandi, A., Krothapalli, K., Buseman, M.C., Li, M., Enyedi, A., and Shah, J., 2003. Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell, 15: 2383-2398.PubMedCrossRefGoogle Scholar
  110. Nawrath, C., and Métraux, J. P. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11: 1393–1404.PubMedCrossRefGoogle Scholar
  111. Nawrath, C., Heck, S., Parinthawong, N., and Métraux, J. P., 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell, 14: 275-286.PubMedCrossRefGoogle Scholar
  112. Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes,S., Kessmann, H., and Ryals, J., 1995. Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance. Plant J., 8: 227–233.CrossRefGoogle Scholar
  113. Niki, T., Mitsubara, I., Seo, S., Ohtsubo, N., and Ohashi, Y., 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves, Plant Cell Physiol., 39: 500–507.Google Scholar
  114. Norman-Setterblad, C., Vidal, S., and Palva, T. E. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Micro. Inter., 13: 430–438.CrossRefGoogle Scholar
  115. Nürnberger, T., and Brunner, F. 2002. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol., 5: 318–324.PubMedCrossRefGoogle Scholar
  116. Parker, J. E. 2003. Plant recognition of microbial patterns. Tren. Plant Sci., 8: 245– 247.CrossRefGoogle Scholar
  117. Pasquer, F., Isidore, E., Zarn, J., and Keller, B., 2005. Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol. Biol., 57: 693-707.PubMedCrossRefGoogle Scholar
  118. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., Sharma, S.B., Klessig, D. F., Martienssen, R., Mattsson, O., Jensen, A.B., and Mundy, J., 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103: 1111-1120.PubMedCrossRefGoogle Scholar
  119. Pieterse, C. M. J., Ton, J. and Van Loon, L. C., 2001. Cross-talk between plant defense signaling pathways: boost or burden?Ag.Biotech.Net., 3: 1-8.Google Scholar
  120. Pieterse, C. M. J., and Van Loon, L.C., 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol., 7: 456–464.PubMedCrossRefGoogle Scholar
  121. Pieterse, C. M. J., VanWees, S. C. M., Ton, J., Van Pelt, J. A., and Van Loon, L. C., 2002. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol., 4: 535–544.CrossRefGoogle Scholar
  122. Pink, D. A. C., 2002. Stategies using genes for non-durable resistance. Euphytica, 1: 227-236.CrossRefGoogle Scholar
  123. Preston, C.A., Lewandowski, C., Enyedi, A.J., and Baldwin , I.T., 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta, 209: 87–95.PubMedCrossRefGoogle Scholar
  124. Rainsford, K. D., 1984. Aspirin and the salicylates. Butterworth, London.Google Scholar
  125. Raridan, G. J., and Delaney, T. P., 2002. Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics, 29: 439-451.Google Scholar
  126. Raskin, I., 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43: 439-463.CrossRefGoogle Scholar
  127. Rasmussen, J.B., Hammerschmidt, R., and Zook, M.N. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol., 97: 1342-1347.PubMedCrossRefGoogle Scholar
  128. Rate, D.N., Cuenca, J.V., Bowman, G.R., Guttman, D.S., and Greenberg, J.T., 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell, 11: 1695-1708.PubMedCrossRefGoogle Scholar
  129. Ribnicky, D.M., Shulaev, V., and Raskin, I., 1998. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol., 118: 565-572.CrossRefPubMedGoogle Scholar
  130. Ross, A.F., 1966. Systemic effects of local lesion formation. Beemster ABR, Dijkstra J, eds. Viruses of Plants, Amsterdam, North-Holland. 127–150.Google Scholar
  131. Rüffer, M., Steipe, B., and Zenk, M. H., 1999. Evidence against specific binding of salicylic acid to catalase. FEBS Lett., 377: 175-180.CrossRefGoogle Scholar
  132. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D., 1996. Systemic acquired resistance. Plant Cell, 8: 1809–1819.PubMedCrossRefGoogle Scholar
  133. Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.-Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P., and Uknes, S., 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor Iκ B. Plant Cell, 9: 425–439.PubMedCrossRefGoogle Scholar
  134. Schweigert, N., Zehnder, A. J. B., and Eggen, R. I. L., 2001. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ. Microbiol., 3: 81-91.PubMedCrossRefGoogle Scholar
  135. Sekine, K.T., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H., 2004. Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism. Mol. Plant-Microbe Inter., 17: 623-632.CrossRefGoogle Scholar
  136. Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., and Hass, D., 1995. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol. Gen. Genet., 249: 217–228.PubMedCrossRefGoogle Scholar
  137. Shah, J., 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant. Biol., 6: 365-371.PubMedCrossRefGoogle Scholar
  138. Shah, J., 2005, Lipids, lipases and lipid modifying enzymes in plant disease resistance. Annu. Rev. Phytopath., 43: 229-260.CrossRefGoogle Scholar
  139. Shah, J., Kachroo, P., and Klessig, D.F., 1999. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders Defensin gene expression SA dependent. Plant Cell, 11: 191-206.PubMedCrossRefGoogle Scholar
  140. Shah, J., Kachroo, P., Nandi, A., and Klessig, D.F., 2001. A recessive mutation in the Arabidopsis SSI2 gene confers SA and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J., 25: 563–574.PubMedCrossRefGoogle Scholar
  141. Shah, J., and Klessig, D. F., 1999. Salicylic acid: signal perception and transduction. In: Hooykaas, P. P. J., Hall, M. A, Libbenga, K. R., eds., Biochemistry and Molecular Biology of Plant Hormones. Amsterdam, Netherlands: Elsevier. 513–541.Google Scholar
  142. Shah, J., Tsui, F., and Klessig, D.F., 1997. Characterization of a salicylic acid insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe. Inter., 10: 69-78.CrossRefGoogle Scholar
  143. Shirano, Y., Kachroo, P., Shah, J., and Klessig, D.F., 2002. A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor–nucleotide binding site–leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 14: 3149–3162.PubMedCrossRefGoogle Scholar
  144. Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., and Lamb, C., 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell, 9: 261–270.PubMedCrossRefGoogle Scholar
  145. Shulaev V, Léon J, and Raskin I., 1995. Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell, 7: 1691–1701.PubMedCrossRefGoogle Scholar
  146. Shulaev, V., Silverman, P., and Raskin, I., 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385: 718–721.CrossRefGoogle Scholar
  147. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J.-P., and Raskin, I., 1995. Salicylic acid in rice: biosynthesis, conjugation, and possible role. Plant Physiol., 108: 633-639.PubMedGoogle Scholar
  148. Singh, D. P., Moore, C. A., Gilliland, A., and Carr, J. P., 2004. Activation of multiple antiviral defense mechanisms by salicylic acid. Mol. Plant Pathol., 5: 57-63.CrossRefGoogle Scholar
  149. Slaymaker, D.H., Navarre, D.A., Clark, D., Del Pozo, O., Martin, G.B., and Klessig, D.F., 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. USA., 99: 11640-11645.PubMedCrossRefGoogle Scholar
  150. Smith, J. A., Hammerschmidt, R., and Fulbright, D. W., 1991, Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringaePhysiol. Mol. Plant Pathol., 38: 223-235.CrossRefGoogle Scholar
  151. Song, J.T., Lu, H., McDowell, J.M., and Greenberg, J.T., 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J., 40: 200-212.PubMedCrossRefGoogle Scholar
  152. Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J.-P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X., and Pieterse, C. M. J., 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 15: 760–770.PubMedCrossRefGoogle Scholar
  153. Sticher, L., Mauch-Mani, B., and Métraux, J.P., 1997. Systemic acquired resistance. Annu. Rev. Phytopathol., 35: 235–270.PubMedCrossRefGoogle Scholar
  154. Stout, M. J., Fidantsef, A.L., Duffey, S. S., and Bostock, R. M., 1999. Signal interactions in pathogen and insect attack: Systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol., 54: 115–130.CrossRefGoogle Scholar
  155. Stout, M. J., Workman, K.V., Bostock , R. M., and Duffey , S.S., 1998. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia., 113: 74–81.CrossRefGoogle Scholar
  156. Summermatter, K., Sticher, L., and Metraux, J. P., 1995. Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv. syringae. Plant. Physiol., 108: 1379-1385.PubMedGoogle Scholar
  157. Suzuki, H., Xia, Y., Cameron, R., Shadle, G., Blount, J., Lamb, C., and Dixon, R.A., 2004. Signals for local and systemic responses of plants to pathogen attack. J. Exp. Bot., 55: 169-179.PubMedCrossRefGoogle Scholar
  158. Takahashi, H., Chen, Z., Du, H., Liu, Y., and Klessig, D.F. 1997. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J., 11: 993-1005.PubMedCrossRefGoogle Scholar
  159. Takahashi, H., Miller, J., Nozaki, Y., Sukamoto, Takeda, M., Shah, J., Hase, S., Ikegami, M., Ehara, Y., and Dinesh-Kumar, S.P., 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J., 32: 655-667.PubMedCrossRefGoogle Scholar
  160. Tenhaken, R., and Rubel, C., 1997. Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol., 115: 291–298.PubMedGoogle Scholar
  161. Thaler, J. S., Fidantsef, A.L., Duffey, S. S., and Bostock, R. M., 1999. Trade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol., 25: 1597–1609.CrossRefGoogle Scholar
  162. Torres, M. A., Dangl, J. L., and Jones, J. D. G., 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA., 99: 517-522.PubMedCrossRefGoogle Scholar
  163. Turner, J. G., Ellis, C., and Devoto, A., 2002. The jasmonate signal pathway. Plant. Cell, 14: S153–S164.PubMedGoogle Scholar
  164. Uquillas, C., Letelier , I., Blanco, F., Jordana, X., and Holuigue, L., 2004. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol. Plant. Micro. Inter., 17: 34-42.CrossRefGoogle Scholar
  165. Vallèlian-Bindschedler, L., Mètraux, J. P., and Schweizer, P., 1998. Salicylic acid accumulation in barley is pathogen specific but not required for defensegene activation, Mol. Plant Micro. Inter., 11: 702–705.CrossRefGoogle Scholar
  166. Van Loon, L.C., 2000. Systemic induced resistance. In Mechanisms of Resistance to Plant Diseases, ed. A.J. Slusarenko, R,.S.S. Fraser, L.C. Van Loon, pp. 521–74. Dordrecht, Netherlands: Kluwer.Google Scholar
  167. Van Wees, S. C. M., and Glazebrook, J. 2003. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid. Plant J., 33:733-742.PubMedCrossRefGoogle Scholar
  168. Van Wees, S. C. M., De Swart, E. A. M., Van Pelt, J. A., Van Loon, L. C., and Pieterse, C. M. J., 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA., 97: 8711–8716.PubMedCrossRefGoogle Scholar
  169. Verberne M. C. Budi Muljono, A. B., and Verpoorte, R., 1999. Salicylic acid biosynthesis, In: Hooykaas, P. P. J., Hall, M. A., Libbenga, K. R., eds., Biochemistry and Molecular Biology of Plant Hormones. Amsterdam, Netherlands: Elsevier. 295-312.Google Scholar
  170. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J., 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6: 959–965.PubMedCrossRefGoogle Scholar
  171. Vidal, S., Ponce de Lèon, I., Denecke, J., and Palva, T. E., 1997. Salicylic acid and the plant pathogen Erwinia carotovorainduce defense genes via antagonistic pathways. Plant J., 11: 115–123.CrossRefGoogle Scholar
  172. Wang, K. L. C., Li, H., and Ecker, J. R., 2002. Ethylene biosynthesis and signaling networks. Plant Cell, 14: S131–S151.PubMedGoogle Scholar
  173. Wang, D., Weaver, D.N., Kesharwani, M., and Dong, X., 2005. Induction of protein secretory pathway is required for systemic acquired resistance. Science, 308: 1036-1040.PubMedCrossRefGoogle Scholar
  174. Wasternack, C., Atzorn, R., Jarosch, B., and Kogel, K.H., 1994. Induction of a thionin, the jasmonate-induced 6 kDa protein of barley by 2,6,-dichloroisonicotinic acid. J. Phytopath., 140: 280-284.Google Scholar
  175. Weissman, G., 1991. Aspirin. Scient. Amer., 264: 84-90.CrossRefGoogle Scholar
  176. White, R. F., 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99: 410-412.CrossRefPubMedGoogle Scholar
  177. Wiermer, M., Feys, B.J., and Parker, J.E., 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant. Biol., 8: 383–389.PubMedCrossRefGoogle Scholar
  178. Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M., 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 414: 562-565.PubMedCrossRefGoogle Scholar
  179. Xiao, S., Brown, S., Patrick, E., Brearley, C., and Turner, J.G., 2003. Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell, 15: 87-95.CrossRefGoogle Scholar
  180. Xu, Y., Chang, P. F. L., Liu, D., Narasimhan, M. L., Raghothama, K.G., Hasegawa, P. M., and Bressan, R. A.., 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 6: 1077–1085.PubMedCrossRefGoogle Scholar
  181. Yang, Y., Qi, M., and Mei, C., 2004. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J., 40: 909- glucosyltransferase in oat roots. Plant Physiol., 100: 1114-1119.Google Scholar
  182. Yalpani, N., Shulaev, V., and Raskin, I., 1993. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopath., 83: 702-708.CrossRefGoogle Scholar
  183. Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A., and Raskin, I., 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3: 809-818.PubMedCrossRefGoogle Scholar
  184. Yoshioka, K., Kachroo, P.K., Tsui, F., Sharma, S.B., Shah, J., and Klessig, D.F., 2001. Environmentally-sensitive SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J., 26: 447-459.PubMedCrossRefGoogle Scholar
  185. Yu, D., Chen, C., and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 13: 1527-1539.PubMedCrossRefGoogle Scholar
  186. Yu, D., Liu, Y., Fan, B., Klessig, D.F., and Chen, Z. 1997. Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol., 115: 343-349.PubMedGoogle Scholar
  187. Zhang, Y., Tessaro, M. J., Lassner, M., and Li, X., 2003. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 15: 2647–2653.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ratnesh Chaturvedi
    • 1
  • Jyoti Shah
    • 1
  1. 1.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations