Advertisement

Salicylic Acid and Local Resistance to Pathogens

  • Igor V. Maksimov
  • Lubov G. Yarullina
Chapter

Abstract

Salicylic acid triggers is the system for acquired resistance to phytopathogens and hypersensitive cell death of infected cells. It was shown that in "sick" plants salicylic acid induced protective response, caused by increasing the level of multiple local reactive oxygen species with the participation of oxalate oxidase and also lignification of pathogen penetration zone by involving peroxidase. The localization of oxidative burst leads to the death of pathogen and isolation of host infected tissues that were provided with "chitin-specificity" of these enzymes. Induction of activity of wheat "chitin-specific" oxalateoxidase and anionic peroxidase, intensification of their secretion into intercellular space under salicylic acid influence, that provides successful defense reactions, close to pathogen infection structures have been revealed.

Key words

Triticum aestivum Tilletia caries calli – co-culturing salicylic acid peroxidase oxalateoxidase – diaminobenzidine colored (DAB-colored) lignification systemic and local resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G.K., Rakwal, R., and Jwa, N.-S., 2002. Cloning and Characterization of a Jasmonate Inducible Rice (Oriza sativa L.) Peroxidase Gene OsPOX against Global Signaling Molecules and Certain Inhibitors of Kinase-Signaling Cascade(s). Plant Sci., 162:49–58.CrossRefGoogle Scholar
  2. Alvarez, M.E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol., 44: 429-442.PubMedCrossRefGoogle Scholar
  3. Apostol, I., Heinstein, P.F., and Low, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol.,90: 109-116.PubMedCrossRefGoogle Scholar
  4. Blee, K.A., Wheathely, E.R., Bonham V.A., Mitchell, G.P., Robertson, D., Slabas, A.R., Burrell, M.M., Wojtaszek, P., and Bolwell, G.P. 2001. Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesizes secondary walls as determined by biochemical and morphological parameters.Planta, 212: 404-415.PubMedCrossRefGoogle Scholar
  5. Brownleader, M.D., Hopkins, J., Mobasheri, A., Dey, P.M., Jackson, P., and Trevan, M. 2002. Role of extension peroxidase in tomato (Lycopercicon esculentum Mill.) seedling growth. Planta, 210: 668-676.CrossRefGoogle Scholar
  6. Carpin, S., Crevecoeur, M.,de Meyer, M., Simon, P., Greppin, H., and Pennel, C., 2001. Identification of Ca2+-pectate binding peroxidase on an apoplastic peroxidase. Plant Cell, 13: 511-520.PubMedCrossRefGoogle Scholar
  7. Caruso, C., Chilosi, G., Leonardi, L., Bertini, L., Margo, P., Buonocore, V., and Capolare, C., 2001. A Basic Peroxidase from wheat kernel with antifungal activity. Phytochem., 58: 743–750.CrossRefGoogle Scholar
  8. Chen, Z., Iyer, S., Caplan, A., Klessing, D.F., and Fan, B., 1997. Differential accumulation of salicylic acid-sensitive catalase in different rice tissues. Plant Physiol., 114: 193–201.PubMedCrossRefGoogle Scholar
  9. Custers, J.H.H.V., Harrison, S.J., Sela-Buurlage, M.B., Van Deventer, E., Lageweg, W., Howe, P.W., Van der Meijs, P.J., Ponstein, A.S., Simons, B.H., Melchers, L.S., and Stuiver, M.H., 2004. Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J., 39: 147-160.PubMedCrossRefGoogle Scholar
  10. Dowd, P.F., Lagrimini, L.M., and Herms, D.A., 1999. Tobacco anionic peroxidase often increases resistance to insects in different dicotyledonous species. Pesticide Sci., 55: 633-634.CrossRefGoogle Scholar
  11. Dumas, B., Freyssinet, G., and Pallet, R.E., 1995. Tissue-specific expression of germin-like oxalate oxidase development and fungal infection of barley seedlings. Plant Physiol., 107: 1091-1096.PubMedGoogle Scholar
  12. Durner, J., and Klessig, D.F., 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-Dichloroisonicotinic acid, two inducers of plant defense.Proc. Natl. Acad. Sci. USA ,.,92: 11312–11316.PubMedCrossRefGoogle Scholar
  13. Guan, L. and Scandalios, J.G. 1995. Developmentally related responses of maize catalase gene to salicylic acid.Proc. Natl. Acad. Sci. USA., 92: 5930–5954.PubMedCrossRefGoogle Scholar
  14. Hippeli, S., Heiser, I., and Elstner, E. F., 1999. Activated oxygen and free oxygen radicals in pathology: New insights and analogies between animals and plants. Plant Physiol. Biochem., 37: 167-178.CrossRefGoogle Scholar
  15. Hukelhoven, R., Fodor, J., Trujllo, M. and Kogel, K.-H. 2000. Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta, 212: 16-24.CrossRefGoogle Scholar
  16. Ingram, D.S., and MacDonald, M.V. 1986. In vitro selection of mutants. In: Nuclear techniques and in vitro culture for plant improvement. Vienna: IAEA, 241-257Google Scholar
  17. Kawano, T., and Muto, S., 2000. Mechanism of peroxidase action for salicylic acid induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot., 51: 685–693.PubMedCrossRefGoogle Scholar
  18. Kearney, J.F., Parrott, W.A., and Hill, N.S. 1991. Infection of somatic embryos of tall fescue with Acremonium coenophialum. Crop Sci., 31: 979-984.Google Scholar
  19. Khairullin, R. M., Yusupova, Z. R., and Maksimov, I. V. 2000. Protective responses of wheat treated with fungal pathogens: 1. Interaction of wheat anionic peroxidases with chitin, chitosan, and teliospores of Tilletia caries. Russian.J. Plant Physiol., 47: 97–102.Google Scholar
  20. Khairullin, R.M., Maksimov, I.V., and Yusupova, Z.R., 2001. Activation of anionic peroxidase isoforms in septoria- infected wheat plants and possible involvement of IAA and ABA in this process, Mikol. Fitopatol., 35: 47–53.Google Scholar
  21. Liu, M.-X., and Kolattukudy, P.E., 1997. Expression of an anionic peroxidase and oxidative burst in tomato cells induced by the elicitor from Verticillium albo-atrui // Acta Phytophysiol. Sin., 23: 220-226Google Scholar
  22. Maksimov, I.V., Ganiev, R.M., and Khairullin, R.M., 2002. Changes in the Levels of IAA, ABA, and Cytokinins in Wheat Seedlings Infected with Tilletia caries. Russian.J. Plant Physiol., 49: 248–252.Google Scholar
  23. Maksimov, I.V., Cherepanova, E.A., and Khairullin, R.M., 2003. “Chitin-specific” peroxidases in plants. Biochem. (Moscow), 68: 111-115.CrossRefGoogle Scholar
  24. Maksimov, I.V., Surina, O.B., Sakhabutdinova, A.R., Troshina, N.B., and Shakirova, F. M., 2004. Changes in the phytohormone levels in wheat calli as affected by salicylic acid and infection with Tilletia caries, a bunt pathogenic agent. Russian J. Plant Physiol., 51: 228–233CrossRefGoogle Scholar
  25. Maksimov, I.V., Cherepanova, E.A., Surina, O.B., and Sakhabutdinova, A.R. 2004. The effect of salicylic acid on peroxidase activity in wheat calli cocultured with the bunt pathogen. Russian J. Plant Physiol., 51: 480–485.CrossRefGoogle Scholar
  26. Metraux, J.-P., 2001. Systemic acquired resistance and salicylic acid: current state of knowledge.Eur. J. of Plant Pathol., 107: 13–18.CrossRefGoogle Scholar
  27. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Tren.Plant Sci., 7: 405-410.CrossRefGoogle Scholar
  28. Morimoto, S., Tateishi, N., Inuyama, M., Taura, F., Tanaka, H., and Shoyama, Y., 1999. Identification and molecular characterization of novel peroxidase with structural protein-like properties. J. Biol. Chem., 274:26192-26198.PubMedCrossRefGoogle Scholar
  29. Muthukrishnan, S., Liang, G. H., Trick,H. N., and Gill, B. S., 2001. Pathogenesis-related proteins and their genes in cereals. Plant Cell Tiss. Organ Cul., 64: 93-114.CrossRefGoogle Scholar
  30. Otte, O., and Barz, W., 2000. Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochem. , 53: 1-5.CrossRefGoogle Scholar
  31. Peberdy, J.F., 1988. Fungal cell walls – A review. In: Biochemistry of Cell Walls and Membranes in Fungi. Kuhn P.J., et al. (Eds.) Springer-Verlag: Berlin ets., 5-22.Google Scholar
  32. Peng, M., and Kuc, J., 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopath.,82: 696-699.Google Scholar
  33. Rasmussen, J., Smith, J., Williams, S. Burkhart, W., Ward, E., Somerville, S. C., Ryals, J., and Hammerschmidt, R., 1995. cDNA cloning and systemic expression of acidic peroxidases associated with systemic acquired resistance to disease in cucumber. Physiol. Mol. Plant Pathol.,46: 389-400.CrossRefGoogle Scholar
  34. Repka, V., and Jung, M., 1995. Organ-specific expression of the stress-related anionic peroxidases in cucumber flowers. Biol. Plant., 37: 523-531.Google Scholar
  35. Ride, J.R., 1980. The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiol. Plant Pathol., 16: 187-196.CrossRefGoogle Scholar
  36. Schafer, P., Huckelhoven, R., and Kogel, K.-H., 2004. The white Barley mutant Albostrains shows a supersusceptible but symptom less interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Mol. Plant-Microbe Interact., 17: 366-373.PubMedCrossRefGoogle Scholar
  37. Shakirova, F.M., 2001. Nespetsificheskaya ustoichivost’ rastenii k stressovym faktoram i ee regulyatsiya (Unspecific Plant Resistance to Stress Factors and Its Regulation), Ufa: Gilem, 52.Google Scholar
  38. Sharma, P.T.R., and Singh, B.M., 2002. Salicylic acid induced insensitivity to culture filtrate of Fusarium oxysporum f.sp. zingiberi in the calli of Zingiber officinale Roscoe. Eur. J. Plant Pathol., 108: .31-39.CrossRefGoogle Scholar
  39. Siegel, S.M., 1957. Non - enzymic macromolecules as matrices in biological synthesis. The role of polysaccharides in peroxidase catalyzed lignin polymer formation from eugenol. J. Amer. Chem. Soc., 79: 1628-1632.CrossRefGoogle Scholar
  40. Thordal-Christensen, H., Zang, Z., Wei, Y., and Collinge, D., 1997. Subsellular localization of H$2$O$2$in plants. H$2$O$2$ accumulation in papillae and hypersensitive response during the barley - powdery mildew interaction. Plant J., 11: 1187-1194.CrossRefGoogle Scholar
  41. Van der Westhuizen, A..J., Qian, X.M., and Botha, A.M., 1998. Differential induction of apoiplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by russian wheat aphid infestation. Plant Cell Rep., 18: 132-137.CrossRefGoogle Scholar
  42. Wei, Y., Zhang, Z., Andersen, C.H., Schmelzer, E., Gregersen, P.L., Collinge, D.B., Smedegaard-Petersen, V., and Thordal-Christensen, H., 1998. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol. Biol., 36: 101–112.PubMedCrossRefGoogle Scholar
  43. Wojtaszek, P., and Bolwell, G.P., 1995. Secondary cell-wall-specific glycoprotein(s) from French bean (Phaseolus vulgaris L.). Plant Physiol., 108: 1001-1012.PubMedCrossRefGoogle Scholar
  44. Yarullina, L. G., Maksimov, I. V., and Yamaleev, A. M., 1997. The protective role of lignification from wheat infestation by septoriosis. Mikol. Fitopatol., 31: 65-69.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Igor V. Maksimov
    • 1
  • Lubov G. Yarullina
    • 1
  1. 1.Institute of Biochemistry and GeneticsUfa Research Centre, Russian Academy of ScienceUfaRussia

Personalised recommendations