Skip to main content

Skeletal muscle plasticity – history, facts and concepts

  • Chapter
Book cover Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhihetty PJ, Irrcher I, Joseph AM, Ljubicic V, Hood DA. (2003). Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88,99–107.

    PubMed  CAS  Google Scholar 

  • Agbulut, O., Noirez, P., Beaumont, F., and ButlerBrowne, G.(2003) Myosin heavy chain isoforms in postnatal muscle development of mice. Bio Cell 6,399–406.

    Google Scholar 

  • Akimoto T, Ribar TJ, Williams RS, Yan Z. (2004). Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase IV-deficient mice. Amer J Physiol 287,C1311–C1319.

    CAS  Google Scholar 

  • Allen DL, Leinwand LA. (2002). Intracellular calcium and myosin isoform transitions. Calcineurin and calcium-calmodulin kinase pathways regulate preferential activation of the IIa myosin heavy chain promoter. J Biol Chem 277,45323–45330.

    PubMed  CAS  Google Scholar 

  • Andersen JL, Mohr T, Biering-Sörensen F, Galbo H, Kjaer M. (1996). Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals, Effects of long-term functional electrical stimulation (FES). Pflügers Arch 431,513–518.

    PubMed  CAS  Google Scholar 

  • Andruchov O, Andruchova O, Wang Y, Galler S. (2003). Functional differences in type-I fibres from two slow skeletal muscles of rabbit. Pflugers Arch Eur J Physiol 446,752–759.

    CAS  Google Scholar 

  • Andruchov O, Andruchova O, Wang YS, Galler S. (2004). Kinetic properties of myosin heavy chain isoforms in mouse skeletal muscle, comparison with rat, rabbit, and human and correlation with amino acid sequence. Amer J Physiol Cell Physiol 287,C1725–C1732.

    CAS  Google Scholar 

  • Ausoni S, Gorza L, Schiaffino S, Gundersen K, Lömo T. (1990). Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J Neurosci 10,153–160.

    PubMed  CAS  Google Scholar 

  • Baldwin KM, Haddad F. (2001). Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90,345–357.

    PubMed  CAS  Google Scholar 

  • Barnard RJ, Edgerton VR, Furukawa T, Peter JB. (1971). Histochemical, biochemical and contractile properties of red, white, and intermediate fibers. Am J Physiol 220,410–414.

    PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Olson EN. (2003). Role of calcineurin in striated muscle, development, adaptation, and disease. Biochem Biophys Res Commun 311,1133–1141.

    PubMed  CAS  Google Scholar 

  • Bastide B, Kischel P, Puterflam J, Stevens L, Pette D, Jin JP, Mounier Y. (2002). Expression and functional implications of troponin T isoforms in soleus muscle fibers of rat after unloading. Pflügers Arch 444,345–352.

    PubMed  CAS  Google Scholar 

  • Bigard X, Sanchez H, Zoll J, Mateo P, Rousseau V, Veksler V, Ventura-Clapier R. (2000). Calcineurin Co-regulates contractile and metabolic components of slow muscle phenotype. J Biol Chem 275,19653–19660.

    PubMed  CAS  Google Scholar 

  • Booth FW, Baldwin KM (1996). Muscle plasticity, Energy demanding and supply processes. In, Rowell LB and Shepherd JT (eds) Handbook of Physiology, Section 12, Exercise, Regulation and Integration of Multiple Systems. Oxford University Press, New York,pp 1075–1123

    Google Scholar 

  • Booth FW, Criswell DS. (1997). Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med 18,S265–S269.

    PubMed  Google Scholar 

  • Booth, F. W., Tseng, B. S., Flück, M., and Carson, J. A. (1998). Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol.Scand. 3,343–350.

    Google Scholar 

  • Bottinelli R. (2001). Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story? Pflügers Arch 443,6–17.

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Betto R, Schiaffino S, Reggiani C. (1994a). Maximum shortening velocity and coexistence of myosin heavy chain isoforms in single skinned fast fibres of rat skeletal muscle. J Muscle Res Cell Motil 15,413–419.

    CAS  Google Scholar 

  • Bottinelli R, Betto R, Schiaffino S, Reggiani C. (1994b). Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol (Lond) 478,341–349.

    CAS  Google Scholar 

  • Bottinelli R, Canepari M, Pellegrino MA, Reggiani C. (1996). Force-velocity properties of human skeletal muscle fibres, Myosin heavy chain isoform and temperature dependence. J Physiol (Lond) 495,573–586.

    CAS  Google Scholar 

  • Bottinelli R, Canepari M, Reggiani C, Stienen GJM. (1994c). Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. J Physiol (Lond) 481,663–675.

    CAS  Google Scholar 

  • Bottinelli R, Reggiani C. (2000). Human skeletal muscle fibres, molecular and functional diversity. Prog Biophys Mol Biol 73,195–262.

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Schiaffino S, Reggiani C. (1991). Force-velocity relationship and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol (Lond) 437,655–672.

    CAS  Google Scholar 

  • Bozzo C, Stevens L, Bouet V, Montel V, Picquet F, Falempin M, Lacour M, Mounier Y. (2004). Hypergravity from conception to adult stage, effects on contractile properties and skeletal muscle phenotype. J Exp Biol 207,2793–2802.

    PubMed  Google Scholar 

  • Brooke MH, Kaiser KK. (1970). Three "myosin adenosine triphosphatase" systems, the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18,670–672.

    PubMed  CAS  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM. (1960). Interactions between motoneurones and muscles in respect of the characteristic speed of their responses. J Physiol (Lond) 150,417–439.

    CAS  Google Scholar 

  • Burke RE, Levine DN, Zajac FE, Tsairis P, Engel WK. (1971). Mammalian motor units, Physiological-histochemical correlation in three types in cat gastrocnemius. Science 174,709–712.

    PubMed  CAS  Google Scholar 

  • Burnham R, Martin T, Stein R, Bell G, Maclean I, Steadward R. (1997). Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 35,86–91.

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Baker MJ, Baldwin KM. (1998). Novel transitions in MHC isoforms, separate and combined effects of thyroid hormone and mechanical unloading. J Appl Physiol 85,2237–2248.

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Baker MJ, Huang K, Chou H, Wu YZ, Baldwin KM. (2003). Single-fiber myosin heavy chain polymorphism, how many patterns and what proportions? Am J Physiol 285,R570–R580.

    Google Scholar 

  • Caiozzo VJ, Haddad F, Baker M, McCue S, Baldwin KM. (2000). MHC polymorphism in rodent plantaris muscle, effects of mechanical overload and hypothyroidism. Am J Physiol 278,C709–C717.

    CAS  Google Scholar 

  • Caiozzo VJ, Herrick RE, Baldwin KM. (1992). Response of slow and fast muscle to hypothyroidism – maximal shortening velocity and myosin isoforms. Am J Physiol 263,C86–C94.

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Swoap S, Tao M, Menzel D, Baldwin KM. (1993). Single Fiber Analyses of Type-IIA Myosin Heavy Chain Distribution in Hyperthyroid and Hypothyroid Soleus. Am J Physiol 265,C842–C850.

    PubMed  CAS  Google Scholar 

  • Campbell WG, Gordon SE, Carlson CJ, Pattison JS, Hamilton MT, Booth FW. (2001). Differential global gene expression in red and white skeletal muscle. Am J Physiol Cell Physiol 280,C763–C768.

    PubMed  CAS  Google Scholar 

  • Canepari M, Cappelli V, Pellegrino MA, Zanardi MC, Reggiani C. (1998). Thyroid hormone regulation of MHC isoform composition and myofibrillar ATPase activity in rat skeletal muscles. Arch Physiol Biochem 106,308–315.

    PubMed  CAS  Google Scholar 

  • Canepari M, Rossi R, Pellegrino MA, Bottinelli R, Schiaffino S, Reggiani C. (2000). Functional diversity between orthologous myosins with minimal sequence diversity. J Muscle Res Cell Motil 21,375–382.

    PubMed  CAS  Google Scholar 

  • Carroll S, Nicotera P, Pette D. (1999). Calcium transients in single fibers of low-frequency stimulated fast-twitch muscle of rat. Am J Physiol 277,C1122–C1129.

    PubMed  CAS  Google Scholar 

  • Chin ER. (2004). The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc Engl Scot 63,279–286.

    CAS  Google Scholar 

  • Chin ER, Allen DG. (1996). The role of elevations in intracellular [Ca2 +] in the development of low frequency fatigue in mouse single muscle fibres. J Physiol (Lond) 491,813–824.

    CAS  Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yano Q, Humphries C, Shelton JM, Wu H, Zhu WG, Basselduby R, Williams RS. (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Develop 12,2499–2509.

    PubMed  CAS  Google Scholar 

  • Close RI. (1972). Dynamic properties of mammalian skeletal muscles. Physiol Rev 52,129–197.

    PubMed  CAS  Google Scholar 

  • Conjard A, Peuker H, Pette D. (1998). Energy state and myosin isoforms in single fibers of normal and transforming rabbit muscles. Pflügers Arch 436,962–969.

    PubMed  CAS  Google Scholar 

  • Crabtree GR, Olson EN. (2002). NFAT signaling, choreographing the social lives of cells. Cell 109 SupplS67–79,S67–S79.

    PubMed  CAS  Google Scholar 

  • d’Albis A, Butler-Browne G. (1993). The hormonal control of myosin isoform expression in skeletal muscle of mammals, a review. Bas Appl Myol 3,7–16.

    Google Scholar 

  • Desplanches D. (1997). Structural and functional adaptations of skeletal muscle to weightlessness. Int J Sports Med 18,S259–S264.

    PubMed  Google Scholar 

  • Dubowitz V, Pearse AGE. (1960). Reciprocal relationship of phosphorylase and oxidative enzymes in skeletal muscle. Nature 185,701–702.

    PubMed  CAS  Google Scholar 

  • Edström L, Kugelberg E. (1968). Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry 31,424–433.

    PubMed  Google Scholar 

  • Egginton S, Hudlická O. (1999). Early changes in performance, blood flow and capillary fine structure in rat fast muscles induced by electrical stimulation. J Physiol (Lond) 515,265–275.

    CAS  Google Scholar 

  • Eisenberg BR, Salmons S. (1981). The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. A stereological study. Cell Tissue Res 220,449–471.

    CAS  Google Scholar 

  • Engel WK. (1962). The essentiality of histo- and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology 12,778–784.

    Google Scholar 

  • English AW, Eason J, Schwartz G, Shirley A, Carrasco DI. (1999). Sexual dimorphism in the rabbit masseter muscle, Myosin heavy chain composition of neuromuscular compartments. Cells Tissues Organs 164,179–191.

    PubMed  CAS  Google Scholar 

  • Ferretti G, Antonutto G, Denis C, Hoppeler H, Minetti AE, Narici MV, Desplanches D. (1997). The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol (Lond) 501,677–686.

    CAS  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ. (2001). Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204,3201–3208.

    PubMed  CAS  Google Scholar 

  • Fitts RH, Winder WW, Brooke MH, Kaiser KK, Holloszy JO. (1980). Contractile, biochemical, and histochemical properties of thyrotoxic rat soleus muscle. Am J Physiol 238,C15–C20.

    CAS  Google Scholar 

  • Fitzsimons DP, Herrick RE, Baldwin KM. (1990). Isomyosin distribution in rodent muscles, effects of altered thyroid state. J Appl Physiol 69,321–327.

    PubMed  CAS  Google Scholar 

  • Flück M, Hoppeler H. (2003). Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol 146,159–216.

    PubMed  Google Scholar 

  • Fraysse B, Desaphy JF, Pierno S, DeLuca A, Liantonio A, Mitolo CI, Camerino DC. (2003). Decrease in resting calcium and calcium entry associated with slow-to- fast transition in unloaded rat soleus muscle. Faseb J 17,U172–U196.

    Google Scholar 

  • Freyssenet D, DiCarlo M, Hood DA. (1999). Calcium-dependent regulation of cytochrome c gene expression in skeletal muscle cells – Identification of a protein kinase C-dependent pathway. J Biol Chem 274,9305–9311.

    PubMed  CAS  Google Scholar 

  • Freyssenet D, Irrcher I, Connor MK, DiCarlo M, Hood DA. (2004). Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. Amer J Physiol Cell Physiol 286,C1053–C1061.

    CAS  Google Scholar 

  • Galler S, Hilber K, Gohlsch B, Pette D. (1997a). Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibres. FEBS Lett 410,150–152.

    CAS  Google Scholar 

  • Galler S, Hilber K, Pette D. (1997b). Stretch activation and myosin heavy chain isoforms of rat, rabbit and human skeletal muscle fibres. J Muscle Res Cell Motil 18,441–448.

    CAS  Google Scholar 

  • Galler S, Schmitt T, Pette D. (1994). Stretch activation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres. J Physiol (Lond) 478,523–531.

    Google Scholar 

  • Galler S, Schmitt TL, Hilber K, Pette D. (1997c). Stretch activation and isoforms of myosin heavy chain and troponin-T of rat skeletal muscle fibres. J Muscle Res Cell Motil 18,555–561.

    CAS  Google Scholar 

  • Geiger PC, Cody MJ, Sieck GC. (1999). Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol 87,1894–1900.

    PubMed  CAS  Google Scholar 

  • Giger JM, Haddad F, Qin AX, Baldwin KM. (2004). Effect of cyclosporin A treatment on the in vivo regulation of type I MHC gene expression. J Appl Physiol 97,475–483.

    PubMed  CAS  Google Scholar 

  • Goldberg AL. (1967). Work-induced growth of skeletal muscle in normal and hypophysectomized rats. Am J Physiol 213,1193–1198.

    PubMed  CAS  Google Scholar 

  • Goldspink DF. (1977). The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol (Lond) 264,267–282.

    CAS  Google Scholar 

  • Goldspink G, Scutt A, Loughna PT, Wells DJ, Jaenicke T, Gerlach GF. (1992). Gene expression in skeletal muscle in response to stretch and force generation. Am J Physiol 262,R356–R363.

    PubMed  CAS  Google Scholar 

  • Gollnick PD, King DW. (1969). Effect of exercise and training on mitochondria of rat skeletal muscle. Am J Physiol 216,1502–1509.

    PubMed  CAS  Google Scholar 

  • Gorza L. (1990). Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem 38,257–265.

    PubMed  CAS  Google Scholar 

  • Gorza L, Gundersen K, Lömo T, Schiaffino S, Westgaard RH. (1988). Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. J Physiol (Lond) 402,627–649.

    CAS  Google Scholar 

  • Green HJ, Düsterhöft S, Dux L, Pette D. (1992). Metabolite patterns related to exhaustion, recovery, and transformation of chronically stimulated rabbit fast-twitch muscle. Pflügers Arch 420,359–366.

    PubMed  CAS  Google Scholar 

  • Grützner P. (1883). Zur Physiologie und Histologie der Skelettmuskeln. Breslauer Ärztl Z 5,257–258.

    Google Scholar 

  • Gundersen K, Leberer E, Lömo T, Pette D, Staron RS. (1988). Fibre types, calcium-sequestering proteins and metabolic enzymes in denervated and chronically stimulated muscles of the rat. J Physiol (Lond) 398,177–189.

    CAS  Google Scholar 

  • Guth L, Samaha FJ. (1969). Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol 25,138–152.

    PubMed  CAS  Google Scholar 

  • Gutmann E, Hanzlíková V. (1970). Effect of androgens on histochemical fibre type. Differentiation in the temporal muscle of the guinea pig. Histochemie 24,287–291.

    PubMed  CAS  Google Scholar 

  • Hamilton MT, Booth FW. (2000). Skeletal muscle adaptation to exercise, a century of progress. J Appl Physiol 88,327–331.

    PubMed  CAS  Google Scholar 

  • Hanzlíková V, Schiaffino S, Settembrini P. (1970). Histochemical fiber types characteristics in the normal and the persistent levator ani muscle of the rat. Histochemie 22,45–50.

    PubMed  Google Scholar 

  • Hardie DG. (2004). AMP-activated protein kinase, A key system mediating metabolic responses to exercise. Med Sci Sport Exercise 36,28–34.

    CAS  Google Scholar 

  • Hämäläinen N, Pette D. (1993). The histochemical profiles of fast fiber types IIB, IID and IIA in skeletal muscles of mouse, rat and rabbit. J Histochem Cytochem 41,733–743.

    PubMed  Google Scholar 

  • Hämäläinen N, Pette D. (1995). Patterns of myosin isoforms in mammalian skeletal muscle fibres. Microsc Res Tech 30,381–389.

    PubMed  Google Scholar 

  • He ZH, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. (2000). ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys J 79,945–961.

    PubMed  CAS  Google Scholar 

  • Heilmann C, Pette D. (1979). Molecular transformations in sarcoplasmic reticulum of fast- twitch muscle by electro-stimulation. Eur J Biochem 93,437–446.

    PubMed  CAS  Google Scholar 

  • Heizmann CW, Berchtold MW, Rowlerson AM. (1982). Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci USA 79,7243–7247.

    PubMed  CAS  Google Scholar 

  • Hennig R, Lömo T. (1985). Firing patterns of motor units in normal rats. Nature 314,164–166.

    PubMed  CAS  Google Scholar 

  • Hicks A, Ohlendieck K, Göpel SO, Pette D. 1997. Early functional and biochemical adaptations to low-frequency stimulation of rabbit fast-twitch muscle. Am J Physiol 273,C297–C305.

    PubMed  CAS  Google Scholar 

  • Hilber K, Galler S, Gohlsch B, Pette D. (1999). Kinetic properties of myosin heavy chain isoforms in single fibers from human skeletal muscle. FEBS Lett 455,267–270.

    PubMed  CAS  Google Scholar 

  • Hildebrandt AL, Pilegaard H, Neufer PD. (2003). Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. Amer J Physiol 285,E1021–E1027.

    CAS  Google Scholar 

  • Holloszy JO. (1967). Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242,2278–2282.

    PubMed  CAS  Google Scholar 

  • Holloszy JO, Coyle EF. (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56,831–838.

    PubMed  CAS  Google Scholar 

  • Hood DA. (2001). Invited Review, contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90,1137–1157.

    PubMed  CAS  Google Scholar 

  • Hood DA, Pette D. (1989). Chronic long-term stimulation creates a unique metabolic enzyme profile in rabbit fast-twitch muscle. FEBS Lett 247,471–474.

    PubMed  CAS  Google Scholar 

  • Hood DA, Zak R, Pette D. (1989). Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome c oxidase subunits. Eur J Biochem 179,275–280.

    PubMed  CAS  Google Scholar 

  • Hoppeler H, Flück M. (2003). Plasticity of skeletal muscle mitochondria, structure and function. Med Sci Sports Exerc 35,95–104.

    PubMed  CAS  Google Scholar 

  • Höök P, Sriramoju V, Larsson L. (2001). Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. Am J Physiol 280,C782–C788.

    Google Scholar 

  • Ianuzzo D, Patel P, Chen V, O’Brien P, Williams C. (1977). Thyroidal trophic influence on skeletal muscle myosin. Nature 270,74–76.

    PubMed  CAS  Google Scholar 

  • Izumo S, Nadal-Ginard B, Mahdavi V. (1986). All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231,597–600.

    PubMed  CAS  Google Scholar 

  • Jackman RW, Kandarian SC. (2004). The molecular basis of skeletal muscle atrophy. Amer J Physiol 287,C834–C843.

    CAS  Google Scholar 

  • Jamali AA, Afshar P, Abrams RA, Lieber RL. (2000). Invited review, Skeletal muscle response to tenotomy. Muscle Nerve 23,851–862.

    PubMed  CAS  Google Scholar 

  • Jorgensen AO, Jones LR. (1986). Localization of phospholamban in slow but not fast canine skeletal muscle fibers. An immunocytochemical and biochemical study. J Biol Chem 261,3775–3781.

    PubMed  CAS  Google Scholar 

  • Joubert Y, Tobin C, Lebart MC. (1994). Testosterone-induced masculinization of the rat levator ani muscle during puberty. Dev Biol 162,104–110.

    PubMed  CAS  Google Scholar 

  • Kirschbaum BJ, Kucher H-B, Termin A, Kelly AM, Pette D. (1990). Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscle. J Biol Chem 265,13974–13980.

    PubMed  CAS  Google Scholar 

  • Klitgaard H, Bergman O, Betto R, Salviati G, Schiaffino S, Clausen T, Saltin B. (1990). Co-Existence of myosin heavy chain I and IIA isoforms in human skeletal muscle fibres with endurance training. Pflügers Arch 416,470–472.

    PubMed  CAS  Google Scholar 

  • Knoll P. (1891). Über protoplasmaarme und protoplasmareiche Musculatur. Denkschr Kais Akad Wiss Wien, math -naturwiss Cl 58,633–700.

    Google Scholar 

  • Krenács T, Molnar E, Dobo E, Dux L. (1989). Fibre typing using sarcoplasmic reticulum Ca2 +-ATPase and myoglobin immunohistochemistry in rat gastrocnemius muscle. Histochem J 21,145–155.

    PubMed  Google Scholar 

  • Krüger P (1952) Tetanus und Tonus der quergestreiften Skelettmuskeln der Wirbeltiere und des Menschen. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig

    Google Scholar 

  • Kubis HP, Hanke N, Scheibe RJ, Meissner JD, Gros G. (2003). Ca2 + transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol 285,C56–C63.

    CAS  Google Scholar 

  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B & Gautel M. (2005). The kinase domain of titin controls muscle gene expression and protein turnover. Science 308,1599–1603.

    PubMed  CAS  Google Scholar 

  • Larsson L, Li XP, Teresi A, Salviati G. (1994). Effects of thyroid hormone on fast- and slow-twitch skeletal muscles in young and old rats. J Physiol (Lond) 481,149–161.

    CAS  Google Scholar 

  • Larsson L, Moss RL. (1993). Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol (Lond) 472,595–614.

    CAS  Google Scholar 

  • Läuger P (1991) Electrogenic ion pumps. Sinauer Assoc., Sunderland, MA, USA

    Google Scholar 

  • Leeuw T, Pette D. (1993). Coordinate changes in the expression of troponin subunit and myosin heavy chain isoforms during fast-to-slow transition of low- frequency stimulated rabbit muscle. Eur J Biochem 213,1039–1046.

    PubMed  CAS  Google Scholar 

  • Leeuw T, Pette D. (1996). Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle. Dev Genet 19,163–168.

    PubMed  CAS  Google Scholar 

  • Li WP, Hughes SM, Salviati G, Teresi A, Larsson L. (1996). Thyroid hormone effects on contractility and myosin composition of soleus muscle and single fibres from young and old rats. J Physiol (Lond) 494,555–567.

    CAS  Google Scholar 

  • Li XP, Larsson L. (1997). Contractility and myosin isoform compositions of skeletal muscles and muscle cells from rats treated with thyroid hormone for 0, 4 and 8 weeks. J Muscle Res Cell Motil 18,335–344.

    PubMed  CAS  Google Scholar 

  • Liu Y, Cseresnyés Z, Randall WR, Schneider MF. (2001). Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J Cell Biol 155,27–39.

    PubMed  CAS  Google Scholar 

  • Liu Y, Shen T, Randall WR & Schneider MF. (2005). Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26,13–21.

    PubMed  Google Scholar 

  • Lloyd PG, Prior BM, Yang HT, Terjung RL. (2003). Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol 284,H1668–H1678.

    CAS  Google Scholar 

  • Loughna PT, Izumo S, Goldspink G, Nadal-Ginard B. (1990). Disuse and passive stretch cause rapid alterations in expression of developmental and adults contractile protein genes in skeletal muscle. Development 109,217–223.

    PubMed  CAS  Google Scholar 

  • Lowey S, Waller GS, Trybus KM. (1993). Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365,454–456.

    PubMed  CAS  Google Scholar 

  • Lömo T, Westgaard RH, Dahl HA. (1974). Contractile properties of muscle, control by pattern of muscle activity in the rat. Proc R Soc Lond B 187,99–103.

    PubMed  Google Scholar 

  • Lyons GE, Kelly AM, Rubinstein NA. (1986). Testosterone-induced changes in contractile protein isoforms in the sexually dimorphic temporalis muscle of the guinea pig. J Biol Chem 261,13278–13284.

    PubMed  CAS  Google Scholar 

  • Maier A, Leberer E, Pette D. (1986). Distribution of sarcoplasmic reticulum Ca-ATPase and of calsequestrin in rabbit and rat skeletal muscle fibers. Histochemistry 86,63–69.

    PubMed  CAS  Google Scholar 

  • Margreth A, Dalla Libera L, Salviati G, Ischia N. (1980). Spinal transection and the postnatal differentiation of slow myosin isoenzymes. Muscle Nerve 3,483–486.

    PubMed  CAS  Google Scholar 

  • McCullagh KJA, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lomo T, Schiaffino S. (2004). NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Nat Acad Sci Usa 101,10590–10595.

    PubMed  CAS  Google Scholar 

  • Meissner JD, Gros G, Scheibe RJ, Scholz M, Kubis HP. (2001). Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture. J Physiol (Lond) 533,215–226.

    CAS  Google Scholar 

  • Meissner JD, Kubis HP, Scheibe RJ, Gros G. (2000). Reversible Ca2 +-induced fast-to-slow transition in primary skeletal muscle culture cells at the mRNA level. J Physiol (Lond) 523,19–28.

    CAS  Google Scholar 

  • Michel JB, Ordway GA, Richardson JA, Williams RS. (1994). Biphasic induction of immediate early gene expression accompanies activity-dependent angiogenesis and myofiber remodeling of rabbit skeletal muscle. J Clin Invest 94,277–285.

    PubMed  CAS  Google Scholar 

  • Mira J-C, Janmot C, Couteaux R, d’Albis A. (1992). Reinnervation of denervated extensor digitorum longus of the rat by the nerve of the soleus does not induce the type I myosin synthesis directly but through a sequential transition of type II myosin isoforms. Neurosci Lett 141,223–226.

    PubMed  CAS  Google Scholar 

  • Morey ER. (1979). Spaceflight and bone turnover, correlation with a new rat model of weightlessness. Bioscience 29,168–172.

    Google Scholar 

  • Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S. (2000). Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2,142–147.

    PubMed  CAS  Google Scholar 

  • Musacchia XJ, Deavers DR, Meininger GA, Davis TP. (1980). A model for hypokinesia, effects on muscle atrophy in the rat. J Appl Physiol 48,479–486.

    PubMed  CAS  Google Scholar 

  • Nordsborg N, Bangsbo J, Pilegaard H. (2003). Effect of high-intensity training on exercise-induced gene expression specific to ion homeostasis and metabolism. J Appl Physiol 95,1201–1206.

    PubMed  CAS  Google Scholar 

  • Nwoye L, Mommaerts WFHM. (1981). The effects of thyroid status on some properties of rat fast- twitch muscle. J Muscle Res Cell Motil 2,307–320.

    PubMed  CAS  Google Scholar 

  • Ogata T. (1958a). A histochemical study of the red and white muscle fibers II Activity of the cytochrome oxidase in muscle fibers. Acta Med Okayama 12,228–232.

    Google Scholar 

  • Ogata T. (1958b). A histochemical study of the red and white muscle fibers III Activity of the diphosphopyridine nucleotide diaphorase and triphosphopyridine nucleotide diaphorase in muscle fibers. Acta Med Okayama 12,233–240.

    Google Scholar 

  • Ogata T. (1958c). A histochemical study of the red and white muscle fibers Part I Activity of the succinoxydase system in muscle fibers. Acta Med Okayama 12,216–227.

    CAS  Google Scholar 

  • Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO. (2003). Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17,675–681.

    PubMed  CAS  Google Scholar 

  • Olson EN, Williams RS. (2000a). Calcineurin signaling and muscle remodeling. Cell 101,689–692.

    CAS  Google Scholar 

  • Olson EN, Williams RS. (2000b). Remodeling muscles with calcineurin. BioEssays 22,510–519.

    CAS  Google Scholar 

  • Ouchi N, Shibata R & Walsh K. (2005). AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ Res 96,838–846.

    PubMed  CAS  Google Scholar 

  • Padykula HA, Herman E. (1955). Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. J Histochem Cytochem 3,161–167.

    PubMed  CAS  Google Scholar 

  • Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR, Liberatore CM, Yutzey KE, Crabtree GR, Tsika RW, Molkentin JD. (2004). Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279,26192–26200.

    PubMed  CAS  Google Scholar 

  • Pellegrino MA, Canepari M, Rossi R, DAntona G, Reggiani C, Bottinelli R. (2003). Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J Physiol (Lond) 546,677–689.

    CAS  Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11,2627–2633.

    PubMed  CAS  Google Scholar 

  • Pette D (1980) Plasticity of Muscle. de Gruyter, Berlin New York

    Google Scholar 

  • Pette D. (2001). Historical Perspectives, Plasticity of mammalian skeletal muscle. J Appl Physiol 90,1119–1124.

    PubMed  CAS  Google Scholar 

  • Pette D, Sketelj J, Skorjanc D, Leisner E, Traub I, Bajrovic F. (2002). Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation. J Muscle Res Cell Motil 23,215–221.

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS. (1990). Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116,1-76.

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS. (1997). Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170,143–223.

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS. (2000). Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50,500–509.

    PubMed  CAS  Google Scholar 

  • Pette D, Vrbová G. (1992). Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120,116–202.

    Google Scholar 

  • Pette D, Vrbová G. (1999). Invited review, What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22,666–677.

    PubMed  CAS  Google Scholar 

  • Pilegaard H, Ordway GA, Saltin B, Neufer PD. (2000). Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol 279,E806–E814.

    CAS  Google Scholar 

  • Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R. (1995). mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. Am J Physiol 38,C619–C625.

    Google Scholar 

  • Putman CT, Kiricsi M, Pearcey J, O’Brian C, Maclean I, Murdoch G, Pette D. (2003). AMPK activation increases UCP-3 and enzyme activities in rat muscle without fiber type transitions. J Physiol (Lond) 551,169–178.

    CAS  Google Scholar 

  • Ranvier L. (1873). Proprietés et structures différentes des muscles rouges et des muscles blancs chez les lapins et chez les raies. C r Acad Sci Paris 77,1030–1034.

    Google Scholar 

  • Reggiani C, Kronnie GT. (2004). Muscle plasticity and high throughput gene expression studies. J Muscle Res Cell Motil 25,231–234.

    PubMed  Google Scholar 

  • Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D. (1985). Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflügers Arch 404,1–9.

    PubMed  CAS  Google Scholar 

  • Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. (2004). Control of the size of the human muscle mass. Annu Rev Physiol 66,799–828.

    PubMed  CAS  Google Scholar 

  • Rome LC, Sosnicki AA, Goble DO. (1990). Maximum velocity of shortening of three fibre types from horse soleus muscle, implications for scaling with body size. J Physiol (Lond) 431,173–185.

    CAS  Google Scholar 

  • Roy RR, Baldwin KM, Martin TP, Chimarusti SP, Edgerton VR. (1985). Biochemical and physiological changes in overloaded rat fast- and slow-twitch ankle extensors. J Appl Physiol 59,639–646.

    PubMed  CAS  Google Scholar 

  • Roy RR, Sacks RD, Baldwin KM, Short M, Edgerton VR. (1984). Interrelationships of contraction time, Vmax, and myosin ATPase after spinal transection. J Appl Physiol 56,1594–1601.

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Goodyear LJ. (2002). Invited review, intracellular signaling in contracting skeletal muscle. J Appl Physiol 93,369–383.

    PubMed  CAS  Google Scholar 

  • Salmons S. (1994). Exercise, stimulation and type transformation of skeletal muscle. Int J Sports Med 15,136–141.

    PubMed  CAS  Google Scholar 

  • Salmons S, Vrbová G. (1967). Changes in the speed of mammalian fast muscle following long- term stimulation. J Physiol (Lond) 192,39–40P.

    Google Scholar 

  • Salmons S, Vrbová G. (1969). The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201,535–549.

    CAS  Google Scholar 

  • Saltin B, Gollnick PD (1983). Skeletal muscle adaptability, significance for metabolism and performance. In, Peachey LD, Adrian RH, and Geiger SR (eds) Handbook of Physiology, Sect. 10, Skeletal Muscle. Williams & Wilkins, Baltimore MD,pp 555–631

    Google Scholar 

  • Schachat F, Briggs MM, Williamson EK, McGinnis H (1990). Expression of fast thin filament proteins. Defining fiber archetypes in a molecular continuum. In, Pette D (ed) The Dynamic State of Muscle Fibers. de Gruyter, Berlin New York,pp 279–291

    Google Scholar 

  • Schachat FH, Diamond MS, Brandt PW. (1987). Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol 198,551–554.

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C. (1996). Molecular diversity of myofibrillar proteins, Gene regulation and functional significance. Physiol Rev 76, 371–423.

    PubMed  CAS  Google Scholar 

  • Schmitt T, Pette D. (1991). Fiber type-specific distribution of parvalbumin in rabbit skeletal muscle – a quantitative immunohistochemical and microbiochemical study. Histochemistry 96,459–465.

    PubMed  CAS  Google Scholar 

  • Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, Schiaffino S. (2001). Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci USA 98,13108–13113.

    PubMed  CAS  Google Scholar 

  • Shenkman BS, Nemirovskaya TL, Belozerova IN, Mazin MG, Matveeva OA. (2002). Mitochondrial adaptations in skeletal muscle cells in mammals exposed to gravitational unloading. J Gravit Physiol 9,159–162.

    Google Scholar 

  • Simoneau JA, Pette D. (1988). Specific effects of low-frequency stimulation upon energy metabolism in tibialis anterior muscles of mouse, rat, guinea pig, and rabbit. Reprod Nutr Dev 28(3B): 781–4.

    PubMed  CAS  Google Scholar 

  • Simoneau J-A, Pette D. (1988). Species-specific effects of chronic nerve stimulation upon tibialis anterior muscle in mouse, rat, guinea pig, and rabbit. Pflügers Arch 412,86–92.

    PubMed  CAS  Google Scholar 

  • Skorjanc D, Dünstl G, Pette D. (2001). Mitochondrial enzyme defects in normal and low-frequency-stimulated muscles of young and aging rats. J Gerontol A Biol Sci Med Sci 56,B503–B509.

    PubMed  CAS  Google Scholar 

  • Skorjanc D, Jaschinski F, Heine G, Pette D. (1998). Sequential increases in capillarization and mitochondrial enzymes in low-frequency stimulated rabbit muscle. Am J Physiol 274,C810–C818.

    PubMed  CAS  Google Scholar 

  • Sréter FA, Elzinga M, Mabuchi K. (1975). The N-methylhistidine content of myosin in stimulated and cross- reinnervated skeletal muscles of the rabbit. FEBS Lett 57,107–111.

    PubMed  Google Scholar 

  • Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 48,623–629.

    PubMed  CAS  Google Scholar 

  • Staron RS, Hikida RS. (1992). Histochemical, biochemical, and ultrastructural analyses of single human muscle fibers, with special reference to the C-fiber population. J Histochem Cytochem 40,563–568.

    PubMed  CAS  Google Scholar 

  • Staron RS, Pette D. (1986). Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochemistry 86,19–23.

    PubMed  CAS  Google Scholar 

  • Steinacker JM, Opitz-Gress A, Baur S, Lormes W, Bolkart K, Sunder-Plassmann L, Liewald F, Lehmann M, Liu YF. (2000). Expression of myosin heavy chain isoforms in skeletal muscle of patients with peripheral arterial occlusive disease. J Vasc Surg 31,443–449.

    PubMed  CAS  Google Scholar 

  • Stevens L, Gohlsch B, Mounier Y, Pette D. (1999a). Changes in myosin heavy chain mRNA and protein isoforms in single fibers of unloaded rat soleus muscle. FEBS Lett 463,15–18.

    CAS  Google Scholar 

  • Stevens L, Sultan KR, Peuker H, Gohlsch B, Mounier Y, and Pette D. (1999b). Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. Am J Physiol 277,C1044–1049

    CAS  Google Scholar 

  • Stienen GJM, Kiers JL, Bottinelli R, Reggiani C. (1996). Myofibrillar ATPase activity in skinned human skeletal muscle fibres, Fibre type and temperature dependence. J Physiol (Lond) 493,299–307.

    CAS  Google Scholar 

  • Sugiura T, Miyata H, Kawai Y, Matoba H, Murakami N. (1993). Changes in myosin heavy chain isoform expression of overloaded rat skeletal muscles. Int J Biochem 25,1609–1613.

    PubMed  CAS  Google Scholar 

  • Talmadge RJ. (2000). Myosin heavy chain isoform expression following reduced neuromuscular activity, Potential regulatory mechanisms. Muscle Nerve 23,661–679.

    PubMed  CAS  Google Scholar 

  • Talmadge RJ, Roy RR, Edgerton VR. (1999). Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Rec 255,188–201.

    PubMed  CAS  Google Scholar 

  • Tavakol M, Roy RR, Kim JA, Zhong H, Hodgson JA, Hoban-Higgins TM, Fuller CA, Edgerton VR. (2002). Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G. Aviat Space Environ Med 73,551–557.

    PubMed  CAS  Google Scholar 

  • Toniolo L, Patruno M, Maccatrozzo L, Pellegrino MA, Canepari M, Rossi R, D’Antona G, Bottinelli R, Reggiani C, Mascarello F. (2004). Fast fibres in a large animal, fibre types, contractile properties and myosin expression in pig skeletal muscles. J Exp Biol 207,1875–1886.

    PubMed  CAS  Google Scholar 

  • Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B, Schena F, Ferretti G. (1997). Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta Physiol Scand 161,459–464.

    PubMed  CAS  Google Scholar 

  • Vrbová G. (1963a). The effect of motoneurone activity on the speed of contraction of striated muscle. J Physiol (Lond) 169,513–526.

    Google Scholar 

  • Vrbová G. (1963b). The effect of tenotomy on the speed of contraction of fast and slow mammalian muscles. J Physiol (Lond) 166,241–250.

    Google Scholar 

  • Waters RE, Rotevatn S, Li P, Annex BH, Yan Z. (2004). Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle. Amer J Physiol 287,C1342–C1348.

    CAS  Google Scholar 

  • Wehrle U, Düsterhöft S, Pette D. (1994). Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation 58,37–46.

    PubMed  CAS  Google Scholar 

  • Weiss A, Schiaffino S, Leinwand LA. (1999). Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family, Implications for functional diversity. J Mol Biol 290,61–75.

    PubMed  CAS  Google Scholar 

  • Westerblad H, Allen DG. (1991). Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98,615–635.

    PubMed  CAS  Google Scholar 

  • Widrick JJ, Romatowski JG, Karhanek M, Fitts RH. (1997). Contractile properties of rat, rhesus monkey, and human type I muscle fibers. Am J Physiol 272,R34–R42.

    PubMed  CAS  Google Scholar 

  • Williams RS, Neufer PD (1996). Regulation of gene expression in skeletal muscle by contractile activity. In, Rowell LB and Shepherd JT (eds) The Handbook of Physiology, Section 12, Exercise, Regulation and Integration of Multiple Systems. Oxford University Press, New York,pp 1124–1150

    Google Scholar 

  • Winder WW. (2001). Invited review, Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 91,1017–1028.

    PubMed  CAS  Google Scholar 

  • Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88,2219–2226.

    PubMed  CAS  Google Scholar 

  • Windisch A, Gundersen K, Szabolcs MJ, Gruber H, Lömo T. (1998). Fast to slow transformation of denervated and electrically stimulated rat muscle. J Physiol (Lond) 510,623–632.

    CAS  Google Scholar 

  • Wu H, Gallardo T, Olson EN, Williams RS, Shohet RV. (2003). Transcriptional analysis of mouse skeletal myofiber diversity and adaptation to endurance exercise. J Muscle Res Cell Motil 24,587–592.

    PubMed  CAS  Google Scholar 

  • Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS. (2001). Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20,6414–6423.

    PubMed  CAS  Google Scholar 

  • Zhong H, Roy RR, Siengthai B & Edgerton VR. (2005). Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol 99,1494–1499.

    PubMed  Google Scholar 

  • Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF. (2000). UCP-3 expression in skeletal muscle, effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol 279,E622–E629.

    CAS  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99,15983–15987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Pette, D. (2006). Skeletal muscle plasticity – history, facts and concepts. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_1

Download citation

Publish with us

Policies and ethics