Review of a Case Study in Germany
  • Inka Held
  • Leif Wolf
  • Matthias Eiswirth
  • Heinz Hötzl
Part of the NATO Science Series book series (NAIV, volume 74)


Leaky sewers have to be considered as potential sources for groundwater contamination in urban areas. The medium-sized city of Rastatt in SWGermany with 50,000 inhabitants was subject of a series of investigations on sewer leakage which are summarized and discussed in this paper. Amongst others factors, the degree of pollution depends on the chemical composition of the wastewater and the amount of exfiltration. The groundwater underneath the city area showed anthropogenic influence resulting in elevated concentrations especially of boron, potassium and sodium as well as a generally increased electrical conductivity. Groundwater in the close vicinity of broken sewers showed typical sewage indicators such as iodated X-ray contrast media and microbiological parameters. Contamination with pharmaceutical residues and gadolinium could not be found in groundwater, despite significant concentrations of pharmaceuticals in wastewater. In autumn, the contents of boron and microbiological pollution were higher than in spring, indicating a higher ratio of wastewater in groundwater during times of less natural recharge. Groundwater monitoring wells near prominent leaks showed short-time fluctuations of EC and groundwater levels which could be correlated to changes of the wastewater composition and the flow regime in the pipe.


Groundwater Level Observation Well Groundwater Monitoring Waste Water Treatment Plant Focus Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ATV-DVWK, 2001, Information brochure: Zustand der Kanalisation in Deutschland. Results of a survey of ATV-DVWK 2001.Google Scholar
  2. Daughton, C., and Ternes, A., 1999, Pharmaceuticals and Personal Care Products in the environment: Agents of Subtle Change? Environmental Health Perspectives, Special Report, 107(6): 907–938.Google Scholar
  3. DeSilva, D., Burn, S., Tjandraatmadja, G., Moglia, M., Davis, P., Wolf, L., Held, I., Vollertsen, J., Williams, W., and Hafskjold L., 2005, Sustainable Management of Leakage from Wastewater Pipelines. Water Science & Technology (IWA), 52(12):189–198.Google Scholar
  4. Eiswirth, M., and Hötzl, H., 1997, The impact of leaking sewers on urban groundwater, in Groundwater in the Urban Environment Vol. 1: Problems, Processes and Management, J. Chilton et al., eds., Balkema, Rotterdam, 399–404.Google Scholar
  5. Eiswirth, M., Held, I., Wolf, L., and Hötzl, H., 2003, Assessing and improving the sustainability of urban water resources and systems – AISUWRS work package 1 Background study. Commissioned Report to the EU, 30/08/2003.Google Scholar
  6. Eiswirth, M., 2002, Bilanzierung der Stoffflüsse im urbanen Wasserkreislauf - Wege zur Nachhaltigkeit urbaner Wasserressourcen, Habilitation, University of Karlsruhe. Forschergruppe Kanalleckage, 2002, Gefährdungspotential von Abwasser aus undichten Kanälen auf Boden und Grundwasser. Arbeitsbericht der DFG-Forschergruppe an der Universität Karlsruhe, Interim Report of the German research group Kanalleckage,, pp. 73–76.Google Scholar
  7. Gutekunst, B., 2003, CKW-Verunreinigungen im Grundwasser entlang von Abwassersammlern in Rastatt, unpublished thesis.Google Scholar
  8. Heberer, T., 1999, “Groβräumige Verteilung”, Chemiker haben Arzneimittelrückständen im Grund-, Brunnen- und sogar Trinkwasser festgestellt. Erklärt sich damit die nachlassende Wirkung von Antibiotika?, in: Spiegel 7/1999, 218–220, Springer Verlag Berlin.Google Scholar
  9. Hua, J., Pinglin, A., Winter, J., and Gallert, C., 2003, Elimination of COD, microorganisms and pharmaceuticals from sewage by trickling through sandy soil below leaking sewers. Water Res. 37: 4395–4404.Google Scholar
  10. Jekel, M., Olesky-Frenzel, J. and Hartig, C., 2000, Unerwünschte Überbleibsel: Röntgenkontrastmittel und Sulfonamide im Wasserkreislauf, Forschung Aktuell 1/2000, Technische Universität Berlin, 61–64.Google Scholar
  11. Jekel, M., and Wischnak, S., 2000, Herkunft und Verhalten iodorganischer Verbindungen im Wasserkreislauf, in: Schriftenreihe Wasserforschung Bd. 6, Hrsg. B. Weigert, Chr. Steinberg, R. Brüggemann, Berlin: Wasserforschung e.V., 1998.Google Scholar
  12. Mentzner, G., Lind, G., and Nitschke, L., 1999, Survey of boron levels in aquatic environments in Germany, Tenside. Surf. Det. 36:364–378.Google Scholar
  13. Möller, P., Dulski, P., Bau, M., Knappe, A. Pekdeger, A., and Sommer-von-Jahrstedt C., 2000, Anthropogenic gadolinium as a conservative tracer in hydrology, Journal of Geochemical Exploration 69–70:409–414.CrossRefGoogle Scholar
  14. Moreau, J. F., Souissi, M., Chabriais, J., Cyna-Gorse, F. and Richard, O., 1989, New watersoluble iodinated contrast products, Presse Med. 18: 957–959.Google Scholar
  15. Paul, M., Wolf, L., Fund, K., Held, I., Winter, J., Eiswirth, M., Gallert, C., and Hötzl, H., 2004, Microbiological condition of urban groundwater in the vicinity of leaky sewer systems, Acta Hydrochim. Hydrobiol. 32:351–360.CrossRefGoogle Scholar
  16. Scharf, S., Gans, O., and Sattelberger, R., 2002, Arzneimittelwirkstoffe im Zu- und Ablauf von Kläranlagen, Report BE-201, Umweltbundesamt/Federal Environmental Agency, Austria.Google Scholar
  17. Scheytt, T., Grams, S., and Fell, H., 1998, Occurrence and behaviour of drugs in groundwater, in: Gambling with groundwater—physical, chemical, and biological aspects of aquifer-stream relations, J. V. Brahana, Y. Eckstein, L. K. Ongley, R. Schneider, and J. E. Moore, eds., American Institute of Hydrology, St. Paul, Minnesota, pp. 13–18.Google Scholar
  18. Speck, U., 1992, Kontrastmittel. Springer Verlag Berlin, Heidelberg, New York, London.Google Scholar
  19. Steger-Hartmann, T., Länge, R. and Schweinfurth, H., 1999, Environmental risk assessment for the widely used iodinated x-ray contrast agent iopromide (Ultravist), Ecotox. Environ. Safety 42:274–281.CrossRefGoogle Scholar
  20. Tropf, V., 2001, Zwischenbericht vom 3.01.2001, Grundwasserverunreinigung im Bereich der Stadt Rastatt, Landratsamt Rastatt, Umweltamt, unpublished.Google Scholar
  21. Wolf, L., Eiswirth, M., Hötzl, H., 2006, Assessing sewer-groundwater interaction at the city scale based on individual sewer defects and marker species distributions, Environ. Geol. 49(6):849–857.CrossRefGoogle Scholar
  22. Wolf, L., Held, I., Eiswirth, M., Hötzl, H., 2004, Impact of leaky sewers on groundwater quality. Acta Hydrochim. Hydrobiol. 32:361–373.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Inka Held
    • 1
  • Leif Wolf
    • 1
  • Matthias Eiswirth
    • 1
  • Heinz Hötzl
    • 1
  1. 1.Department of Applied GeologyUniversity of KarlsruheGermany

Personalised recommendations