Insect Populations In Relation To Environmental Change In Forests Of Temperate Europe

  • Andrea Battisti

Keywords

Bark Beetle Mixed Stand Living Tree Gypsy Moth Forest Ecology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andow, D.A. (1991). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36, 561–586.CrossRefGoogle Scholar
  2. Ayres, M.P., & Lombardero M.J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment, 262, 263-286.PubMedCrossRefGoogle Scholar
  3. Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16.CrossRefGoogle Scholar
  4. Baltensweiler, W. (1985). Waldsterben – forest pests and air-pollution. Zeitschrift fur Angewandte Etomologie – Journal of Applied Entomology, 99, 77-85.Google Scholar
  5. Barthod, C. (1994). Sylviculture et risques sanitaires dans les forêts tempérées - 1ère partie. Revue Forestière Française, 46, 609-628.Google Scholar
  6. Battisti, A. (1988). Phytophagous insects in the energy flow of an artificial stand of Pinus nigra Arnold in Northern Italy. Redia, 71, 139-159.Google Scholar
  7. Bezemer, T.M., & Jones, T.H. (1998). Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos, 82, 212-222.CrossRefGoogle Scholar
  8. Brooks, G.L., & Whittaker, J.B. (1999). Responses of three generations of a xylem-feeding insect, Neophilaenus lineatus (Homoptera), to elevated CO2. Global Change Biology, 5, 395-401.CrossRefGoogle Scholar
  9. Charnet, F., Delb, H., Dreyer, E., Landeau, S., Landmann, G., Makkonen-Spiecker, K., et al. (2004). Impacts of the Drought and Heat in 2003 on Forests. Freiburger Forstliche Forschung, 57, 1-70.Google Scholar
  10. Coupe, M.D., & Cahill, J.F. Jr (2003). Effects of insects on primary production in temperate herbaceous communities: a meta-analysis. Ecological Entomology, 28, 511–521.CrossRefGoogle Scholar
  11. Dury, S.J., Good, J.E.G., Perrins, C.M., Buse, A., & Kaye, T. (1998). The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology, 4, 55-61.CrossRefGoogle Scholar
  12. Ellenberg, H. (1986). Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer.Google Scholar
  13. Er, K.B.H., & Innes, J.L. (2003). The presence of old-growth characteristics as a criterion for identifying temperate forests of high conservation value. International Forestry Review, 5, 1-8. European Commission, (2002). Towards a guidance document on Natura 2000 and forestry “Challenges and Opportunities”. Brussels: DG ENV B2 Nature and Biodiversity.Google Scholar
  14. Fabbio, G., Merlo, M., & Tosi, V. (2003). Silvicultural management in maintaining biodiversity and resistance of forests in Europe—the Mediterranean region. Journal of Environmental Management, 67, 67–76.PubMedCrossRefGoogle Scholar
  15. Fajer, E.P., Bowers, M.D., & Bazzaz, F.A. (1989). The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. Science, 243, 1198-1200.PubMedCrossRefGoogle Scholar
  16. Fleischer, P. (2001). Long-term ecological research on forest ecosystems in the Tatra National Park. Ekologia-Bratislava, 20, 78-84.Google Scholar
  17. Floyd, D.W., Vonhof, S.L., & Seyfang, H.E. (2001). Forest sustainability - A discussion guide for professional resource managers. Journal of Forestry, 99, 8-28.Google Scholar
  18. Gadgil, P.D., & Bain, J. (1999). Vulnerability of planted forests to biotic and abiotic disturbances. New Forests, 17, 227-238.CrossRefGoogle Scholar
  19. Gaston, K.J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford, UK: Oxford University Press.Google Scholar
  20. Gottschalk, K.W., & Twery, M.J. (1989). Gypsy moth in pine-hardwood mixtures. In T.A. Waldrop (Ed.) Pine-hardwood mixtures: a symposium on management and ecology of the type. (pp 50-58). USDA Forest Service General Technical Report SE 58.Google Scholar
  21. Haettenschwiler, S. & Schafellner, C. (1999). Opposing effects of elevated CO2 and N deposition on Lymantria monacha larvae feeding on spruce trees. Oecologia, 118, 210-217.CrossRefGoogle Scholar
  22. Harrington, R., Fleming, R.A., & Woiwod, I.P. (2001). Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricultural and Forest Entomology, 3, 233-240.CrossRefGoogle Scholar
  23. Hedgren, P.O., Schroeder, L.M. & Weslien, J. (2003). Tree killing by Ips typographus (Coleoptera: Scolytidae) at stand edges with and without colonized felled spruce trees. Agricultural and Forest Entomology, 5, 67-74.CrossRefGoogle Scholar
  24. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D., et al. (2001). Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press.Google Scholar
  25. Hunter, M.D. (2001). Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agricultural and Forest Entomology, 3, 153-159.CrossRefGoogle Scholar
  26. Jactel, H., Brockerhoff, E., & Duelli, P. (2004). A test of the biodiversity-stability theory: Meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In M. Scherer-Lorenzen, C. Körner, E.D., & Schulze, (Eds.), The functional significance of forest diversity. (pp. 235-262), Berlin: Springer.Google Scholar
  27. Jensen, T.S. (1991). Integrated pest management of the nun moth, Lymantria monacha (Lepidoptera: Lymantriidae) in Denmark. Forest Ecology and Management, 39, 29-34.CrossRefGoogle Scholar
  28. Jones, T.H., Thompson, L.J., Lawton, J.H., Bezemer, T.M., Bardgett, R.D., Blackburn, T.M., et al. (1998). Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science, 280, 441-443.PubMedCrossRefGoogle Scholar
  29. Jonsell, B. (2004). Flora Nordica. General Volume. Stockholm: The Bergius Foundation, Royal Swedish Academy of Sciences.Google Scholar
  30. Koricheva, J., Mulder, C.P.H., Schmid, B., Joshi, J., & Huss-Danell, K. (2000). Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grassland. Oecologia, 125, 271–282.CrossRefGoogle Scholar
  31. Landmann, G. (1998). Forest health, silviculture and forest management. In R. Montoya (Ed.), Problemas sanitarios en los sistemas forestales: de los espacios protegidos a los cultivos de especies de crecimiento rapido. (pp 155-183), Madrid: Collecion Tecnica, Publicaciones del Organismo Autonomo Parques Nacionales.Google Scholar
  32. Lasch, P., Lindner, M., Erhard, M., Suckow, F., & Wenzel, A. (2002). Regional impact assessment on forest structure and functions under climate change—the Brandenburg case study. Forest Ecology and Management, 162, 73–86.CrossRefGoogle Scholar
  33. Lindner, M., Sohngen, B., Joyce, L.A., Price, D.T., Bernier, P.J., & Karjalainen, T. (2002). Integrated forestry assessment for climate change impacts. Forest Ecology and Management, 162, 117-136.CrossRefGoogle Scholar
  34. Lindroth, R.L., Kinney, K.K., & Platz, C.L. (1993). Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance. Ecology, 74, 763–777.CrossRefGoogle Scholar
  35. Litvak, M.E., Constable, J.V.H., & Monson, R.K. (2002). Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Oecologia, 132, 382–391.CrossRefGoogle Scholar
  36. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., & Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 1499-1503.PubMedCrossRefGoogle Scholar
  37. McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228-233.PubMedCrossRefGoogle Scholar
  38. May, R.M. (1973). Stability and complexity in model ecosystems. Princeton, NJ: Princeton University Press.Google Scholar
  39. Michalski, J., & Arditi, R. (1999). The complexity-stability problem in food web theory. What can we learn from exploratory models? In F. Blasco, & A. Weill (Eds.), Advances in Environmental and Ecological Modelling. (pp 91-119). Paris: Elsevier.Google Scholar
  40. Mulder, C.P.H., Koricheva, J., Huss-Danell, K., Hogberg, P., & Joshi, J. (1999). Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters, 2, 237-246.CrossRefGoogle Scholar
  41. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.PubMedCrossRefGoogle Scholar
  42. Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., et al. (2002). Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 420, 403- 407.PubMedCrossRefGoogle Scholar
  43. Pietsch, S.A., & Hasenauer, H. (2002). Using mechanistic modeling within forest ecosystem restoration. Forest Ecology and Management, 159, 111-131.CrossRefGoogle Scholar
  44. Pimm, S.L., & Lawton, J.H. (1978). On feeding on more than one trophic model. Nature, 275, 542-544.CrossRefGoogle Scholar
  45. Price, P.W. (1984). Insect ecology. 2nd edition. New York: Wiley.Google Scholar
  46. Root, R.B. (1973). Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards, Brassica oleracea. Ecological Monographs, 43, 95-124.CrossRefGoogle Scholar
  47. Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., & Pounds, J.A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.PubMedCrossRefGoogle Scholar
  48. Roth, S.K., & Lindroth, R.L. (1994). Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia, 98, 133-138.CrossRefGoogle Scholar
  49. Roth, S.K., & Lindroth, R.L. (1995). Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biology, 1, 173-82.CrossRefGoogle Scholar
  50. Scarascia-Mugnozza, G., Oswald, H., Piussi, P., & Radoglou, K. (2000). Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecology and Management, 132, 97–109.CrossRefGoogle Scholar
  51. Schroeder, L.M. & Lindelöw, A. (2002). Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) after storm felling: a comparison between stands with and without removal of wind-felled trees. Agricultural and Forest Entomology, 4, 47-56.CrossRefGoogle Scholar
  52. Schroeder, L.M. & Lindelöw, A. (2003) Response of Ips typographus (Scolytidae: Coleoptera) and other bark- and wood-boring beetles to a flash-flood event. Scandinavian Journal of Forest Research 18, 218-224.CrossRefGoogle Scholar
  53. Schwerdtfeger, F. (1981). Die Waldkrankhelten. III Auf. Berlin: Parey.Google Scholar
  54. Sinclair, B.J., Vernon, P., Klok, C.J., & Chown, S.L. (2003). Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution, 18, 257-262.CrossRefGoogle Scholar
  55. Smith, P.H.D., & Jones, T.H. (1998). Effects of elevated CO2 on the chrysanthemum leafminer, Chromatomyia syngenesiae: a green-house study. Global Change Biology, 4, 287-291.CrossRefGoogle Scholar
  56. Speight, M.R., & Wainhouse, D. (1989). Ecology and management of forest insects. Oxford, UK: Clarendon.Google Scholar
  57. Speight, M.R., Hunter, M.D., & Watt, A.D. (1999). Ecology of insects: concepts and applications. Oxford UK: Blackwell.Google Scholar
  58. Spiecker, H. (2003). Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. Journal of Environmental Management, 67, 55–65.PubMedCrossRefGoogle Scholar
  59. Spiecker, H. (2004). Norway Spruce Conversion – Options and Consequences. EFI Research Reports 18. Leiden: Brill.Google Scholar
  60. Stiling, P., Rossi, A.M., Hungate, B., Dijkstra, P., Hinkle, C.R., Knott, W.M., & Drake B (1999). Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecological Applications, 9, 240-244.PubMedGoogle Scholar
  61. van der Meer, P.J., Jorritsma, I.T.M., & Kramer, K. (2002). Assessing climate change effects on longterm forest development: adjusting growth, phenology, and seed production in a gap model. Forest Ecology and Management, 162, 39–52.CrossRefGoogle Scholar
  62. van Kooten, GC, Eagle, AJ, Manley, J, & Smolak, T. (2004). How costly are carbon offsets? A metaanalysis of carbon forest sinks. Environmental Science & Policy, 7, 239-251.CrossRefGoogle Scholar
  63. Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389-395.PubMedCrossRefGoogle Scholar
  64. Watt, A.D. (1992). Insect pest population dynamics: Effects of tree species diversity. In M.G.R. Cannell, D.C. Malcolm, & P.A. Robertson (Eds.), The Ecology of Mixed-Species Stands of Trees. (pp 267- 275), Oxford, UK: Blackwell.Google Scholar
  65. White, J.A., & Whitham, T.G. (2000). Associational susceptibility of cottonwood to a box elder herbivore. Ecology, 81, 1795-1803.Google Scholar
  66. Williams, D.W., & Liebhold, A.M. (1995). Herbivorous insects and global change - potential changes in the spatial-distribution of forest defoliator outbreaks. Journal of Biogeography, 22, 665-671.CrossRefGoogle Scholar
  67. Williams, R.S., Lincoln, D.E., & Thomas, R.B. (1994). Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance. Oecologia, 98, 64-71.CrossRefGoogle Scholar
  68. Zhang, Q-H., & Schlyter, F. (2004). Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 6, 1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Andrea Battisti
    • 1
  1. 1.Department of Environmental Agronomy - Entomology Via Università 1635020 legnaroItaly

Personalised recommendations